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Abstract Recent genome-wide association studies have
identified many genetic variants associated with fracture
risk. These genetic variants are common in the general
population but have very modest effect sizes. A remaining
challenge is to translate these genetic variant discoveries to
better predict the risk of fracture based on an individual’s
genetic profile (ie, individualized risk assessment). Empiri-
cal and simulation studies have shown that 1) the utility of a
single genetic variant for fracture risk assessment is very
limited; but 2) a profile of 50 genetic variants, each with
odds ratio ranging from 1.02 to 1.15, can improve the
accuracy of fracture prediction and classification beyond
that obtained by conventional clinical risk factors. These
results are consistent with the view that genetic profiling,
when integrated in existing risk assessment models, can
inform a more accurate prediction of fracture risk in an
individual.

Keywords Genetics . Individualized prediction .

Fracture . Osteoporosis . Genome-wide association studies .

GWAS . Single nucleotide polymorphism . SNP . Genes .

Bone mineral density . BMD

Introduction

Fragility fracture is common among the elderly. Data from
the Dubbo Osteoporosis Epidemiology Study showed that
from the age of 50 years, the residual lifetime risk of fracture
is ~50 % in women and ~30 % in men [1]. In women, the

lifetime risk of hip fracture is equivalent to or higher than
the risk of invasive breast cancer [1, 2]. In men, the lifetime
risk of hip and vertebral fractures (17 %) is comparable to
the lifetime risk of being diagnosed with prostate cancer [2,
3]. With the rapid aging of the population, it is projected that
fracture will become not simply a public health problem, but
also impose a great demand on medical services.

There is convincing evidence that fracture contributes to
the loss of human life. A pre-existing fracture is associated
with an increased risk of subsequent fracture [4, 5]. More-
over, a pre-existing fracture is associated with reduced life
expectancy [6]. Individuals with osteoporosis, fracture, and
recurrent fracture have a greater risk of mortality than those
with an initial fracture, which is greater than for those
without a fracture. Furthermore, numerous data, including
our own, accumulated during the past three decades have
consistently shown that the relative risk of death in men with
fracture (1.8-fold) is significantly greater than that in women
(1.4-fold) [4, 6].

Genetics of Fracture Susceptibility

That genetic factors affect the risk of fragility fracture is well
established. Daughters of mothers with a history of hip
fracture have lower bone mineral density (BMD) than those
whose mothers do not have a fracture [7]. Moreover, women
with a familial history of hip fracture have a twofold in-
crease in the risk of hip fracture [8]. Twin and family studies
have further provided estimates of the extent of genetic
effects on fracture susceptibility. Approximately 25 %–
35 % of the variance in the liability to fracture is attributable
to genetic factors [9, 10]. Moreover, genetic factors also
account for a large proportion of variance in risk factors
for fracture such as BMD [11], bone loss [12], quantitative
ultrasound [13], and bone turnover markers [14]. It can be
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stated that heredity is an important risk factor for osteopo-
rosis and fracture risk.

While the demonstration of a genetic effect on fracture is
relatively uncomplicated, the identification of specific genes
that are associated with fracture has proven to be a formi-
dable task. The difficulty lies, not just in the phenotype, but
also in the analytic strategy. Fracture is a clinical event, but
can also be viewed as a trait, in the sense that it is a discrete
characteristic of an organism. As a discrete trait, fracture is
an ultimate consequence of cumulative deterioration in bone
strength and disturbances in bone remodeling. As a result,
fracture is a heterogeneous phenotype, not just in clinical
manifestations, but also in risk factors. For instance, while
fall is a major risk factor for hip fracture, it contributes little
to the risk of vertebral fracture. Moreover, femoral neck
BMD is better than lumbar spine BMD as a predictor of
hip fracture risk. This heterogeneity has major implication in
the search for osteoporosis genes. A “fracture gene,” or
perhaps more accurately, a gene that influences the risk of
fracture, could be the gene that affects BMD, bone structure,
or muscle strength, that increases the likelihood of fall.
Furthermore, a gene that is associated with hip fracture
may not be predictive of vertebral fracture.

Apart from the difficulty in the definition of phenotype,
there are also technical and methodologic difficulties in the
search for genes. Basically, gene-search strategies have
been based on the two major approaches of candidate gene
and genome-wide association analysis [15]. The candidate
gene approach is based on a priori knowledge of the
potential function of the gene involved, and takes advan-
tage of the relevant and known biochemical pathway of
bone physiology. Instead of focusing on a biologically
plausible candidate gene, the genome-wide association
study (GWAS) scans the entire genome, usually used
hundreds of thousands common single nucleotide polymor-
phisms (SNPs; minor allele frequency>5 %), to identify
chromosomal regions harboring genes likely to influence a
trait. GWAS is essentially is a hypothesis-free approach,
because it makes no assumptions about the location and
functional significance of associated loci or their products
[16]. Although it is a hypothesis-free approach, GWAS has
been highly successful in unraveling the genetic contribu-
tion to complex traits.

Identification of Genes

Based on the candidate gene approach, several gene poly-
morphisms (including vitamin D receptor, collagen type Iα1,
osteocalcin, interleukin-1 receptor antagonist, calcium-
sensing receptor, α2HS glycoprotein, osteopontin, osteonec-
tin, estrogen receptor α, interleukin-6, calcitonin receptor,
collagen type Iα2, parathyroid hormone, and transforming

growth factor-α1) have been proposed [17]. However, the
blossomed decade of candidate gene association studies has
been accompanied by increasing frustration with ongoing
conflicting findings and lack of replication, mainly due to
lack of statistical power [18] and false-positives [19]. Until
1996 no clear and relevant genes or loci have emerged by
the less common alternative approach of genome-wide scan.
By using linkage analysis of data from a family with
osteoporosis-pseudoglioma syndrome (OPS), a disorder
characterized by severe low bone mass and eye abnormality,
investigators were able to localize the OPS locus to chro-
mosomal region 11q12-13 [20]. At the same time, a
genome-wide linkage analysis of an extended family with
22 members, among whom 12 had very high bone mass
(HBM), suggested that the HBM locus was also located
within a 30-cM region of the same locus [21]. In follow-
up studies using the positional candidate approach both
research groups found that a gene encoding the low-
density lipoprotein receptor-related protein 5 (LRP5) was
linked to both OPS and HBM [22–24]. The finding that the
LRP5 gene is linked to HBM was subsequently confirmed in
a family study that included individuals with exceptionally
high BMD but were otherwise phenotypically normal [23].
The discovery of the LRP5 gene has, in many ways, initiated
a new phase in the search for genes in osteoporosis.

That new phase is GWAS. The earliest GWAS study in
osteoporosis examined the association between 71,000 ge-
netic variants and BMD measured at different skeleton sites,
and found evidence of association for 40 SNPs. Although
the study was then considered to be underpowered, several
SNPs identified in this study were located in potential
osteoporosis-associated genes, such as MTHFR, ESR1,
LRP5, VDR, and COL1A1 genes [25]. Another GWAS
screened 300,000 variants in an Icelandic population, and
found that variants in the ZBTB40, ESR1, OPG, and RANKL
genes, and those in a novel region 6p21 were significantly
associated with BMD at genome-wide threshold (P<5×10-8)
[26]. This study also suggested some loci associated with
fracture risk, including variants in the 1p36, 2p16, OPG,
MHC, LRP4, and RANK. In the meantime, a GWAS in the
UK and Rotterdam cohorts found that variants in the
TNFRSF11B and LRP5 genes were associated with BMD,
whereas the LRP5 gene was also associated with fracture
risk [27].

Two meta-analyses of GWAS showed that variants in the
ZBTB40, ESR1, LRP4, LRP5, TNFSF11, SOST, and
TNFRSF11A genes were associated with BMD [28, 29],
and that variants in the LRP5, SOST, and TNFSF11A were
associated with fracture risk [29]. Overall, results from
GWAS and meta-analyses indicate that genes involved in
the RANK-RANKL-OPG pathway (TNFRSF11B ,
TNFRSF11A, and TNFSF11 genes), the Wnt-β-catenin
pathway (LRP5, LRP4, and SOST genes), the estrogen
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endocrine pathway (ESR1 gene), and the 1p36 region
(ZBTB40 gene) were those strongly associated with osteopo-
rosis. The latest meta-analysis, which involved 81,949 cases
and 102,444 controls, identified 56 loci that are associated
with BMD and 13 SNPs that are associated with fracture [30].
Several of these loci or SNPs cluster within or near the
RANK-RANKL-OPG system, mesenchymal stem cell
differentiation, endochondral ossification, and Wnt signaling
pathways. The updated list of SNPs that have been shown to
be associated with fracture is shown in Table 1.

Translation of Discovery

The genes listed in Table 1 are unlikely the final list, as
ongoing studies are going to identify more genetic variants

that contribute to the susceptibility to fracture. However, the
genes provide an opportunity to examine their potential
utility in the prediction of fracture. In fact, the potential
application of genes for prediction and prognosis of complex
diseases, including fragility fracture, has been anticipated
before the advance of GWAS. In relation to the translational
genetics of osteoporosis, at present, there are some questions
of interest, including: 1) How can we make use of the genetic
data to predict an individual risk of fracture?; 2) Can genetic
variants alone identify individuals at high risk of fracture?;
and 3) Can the genetic variants improve the prediction accu-
racy of fracture beyond that obtained with conventional clin-
ical risk factors? Addressing these questions will help advance
the individualization of fracture risk.

However, the translation of genetic discoveries into clin-
ical applications remains a challenge. The issue is how to

Table 1 Genes or SNPs
are associated with fracture risk
through GWAS studies

This list was compiled from a
previous GWAS [26] and the
recent meta-analysis of GWAS
[30]

GWAS genome-wide association
studies, SNP single nucleotide
polymorphism

SNP Position Gene Allele Allele frequency OR and 95 % CI P-value

rs7524102 1p36 A 0.83 1.12 (1.05-2.30) 8.4×10-4

rs6696981 1p36 G 0.87 1.15 (1.07-1.25) 2.4×10-4

rs3130340 6p21 MHC T 0.80 1.09 (1.02-1.16) 0.008

rs9479055 6q25 ESR1 C 0.36 1.05 (1.00-1.11) 0.06

rs4870044 6q25 ESR1 T 0.28 1.02 (0.97-1.09) 0.14

rs1038304 6q25 ESR1 G 0.47 1.04 (0.99-1.10) 0.11

rs6929137 6q25 ESR1 A 0.30 1.05 (0.99-1.10) 0.12

rs1999805 6q25 ESR1 C 0.44 1.03 (0.97-1.08) 0.35

rs6993813 8q24 OPG C 0.51 1.06 (1.00-1.11) 0.04

rs6469804 8q24 OPG A 0.52 1.05 (1.00-1.11) 0.052

rs9594738 13q14 RANKL T 0.57 1.04 (0.98-1.11) 0.23

rs9594759 13q14 RANKL T 0.63 1.02 (0.97-1.07) 0.52

rs11898505 2p16 G 0.69 1.11 (1.05-1.17) 1.8×10-4

rs3018362 18p21 RANK A 0.37 1.08 (1.02-1.14) 0.005

rs2306033 11p11 LRP4 G 0.87 1.11 (1.03-1.19) 0.007

rs7935346 11p11 LRP4 G 0.78 1.08 (1.01-1.14) 0.02

rs4233949 2p16.2 SPTBN1 G 0.63 1.06 (1.04-1.08) 2.6×10-8

rs6532023 4q22.1 MEPE/SPP1 G 0.67 1.06 (1.04-1.09) 1.7×10-8

rs4727338 7q21.3 SLC25A13 G 0.32 1.08 (1.05-1.10) 5.9×10-11

rs1373004 1q21.1 MBL2/DKK1 T 0.13 1.10 (1.06-1.13) 9.0×10-8

rs3736228 11q13.2 LRP5 T 0.15 1.09 (1.06-1.13) 1.4×10-8

rs4796995 18p11.21 FAMB210A G 0.39 1.08 (1.06-1.10) 8.8×10-13

rs6426749 1p36.12 ZBTB40 G 0.83 1.07 (1.04-1.10) 3.6×10-6

rs7521902 1p36.12 WNT4 A 0.27 1.09 (1.06-1.13) 1.4×10-7

rs430727 3p22.1 CTNNB1 T 0.47 1.06 (1.03-1.08) 2.9×10-7

rs6959212 7p14.1 STARD3NL T 0.33 1.05 (1.02-1.07) 7.2×10-5

rs3801387 7q31.31 WNT16 A 0.74 1.06 (1.04-1.08) 2.7×10-7

rs7851693 9q34.11 FUBP3 G 0.37 1.05 (1.02-1.07) 3.5×10-5

rs163879 11p14.1 DCDC5 T 0.36 1.05 (1.03-1.07) 3.3×10-5

rs1286083 14q32.12 RPS6KA5 T 0.81 1.05 (1.03-1.08) 7.2×10-5

rs4792909 17q21.31 SOST G 0.62 1.07 (1.04-1.10) 6.9×10-6

rs227584 17q21.31 C17orf53 A 0.67 1.05 (1.03-1.07) 4.1×10-5
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assess the utility of genes in fracture prediction, and what
metrics are suitable for the assessment. It is now well known
that simple measure of association such as odds ratio (OR) is
not adequate to gauge the utility of a genetic variant [31].
The utility of a genetic variant should be assessed in terms
of discrimination, and more importantly, reclassification.

Discrimination measures how well a genetic variant can
separate individuals who will have a fracture from those will
not [32]. The primary metric of discrimination is the area
under the receiver operating characteristic curve (AUC),
which can be interpreted as the probability that in a set of
randomly selected pairs of fracture and non-fracture, the test
result will be higher in fracture patients than in non-fracture
individuals. In reality, AUC is a compromise between
sensitivity and specificity, and is thus a global estimate of
prognostic accuracy. However, AUC is a rather insensitive
measure to change (ie, a meaningful difference in prognostic
value between two predictive models is not necessarily
reflected by the AUC) [33]. Moreover, the AUC has no
direct clinical meaning, and is therefore not helpful for
clinical decision.

A clinically meaningful metric of usefulness of a marker
is risk reclassification [34]. For a given threshold of risk, an
individual can be classified as “high risk” or “low risk.”
With additional risk factors (eg, genetic variant) the individ-
ual may change risk category from one to another. Consider
a predictive model with clinical risk factors, and a model
with predictive factors plus genetic variants. If genetic
variants are useful, then the addition of those genetic
variants should result in more individuals with fracture
being classified into the high-risk group than to the low-
risk group; conversely, among those without a fracture,
more are classified into the low-risk group than the high-
risk group. The net difference between the two proportions
of reclassification is referred to as net reclassification im-
provement (NRI) [35]. Thus, when treatment decision is
based on risk threshold, the NRI can be helpful for making
clinical decision concerning an individual.

Utility of a Single Gene

Conceptually, the utility of a gene in predicting fracture is a
function of several parameters. Apart from the 5-year
incidence of fracture in the general population, the risk
threshold for treatment affects the NRI metric. Moreover,
the frequency of high-risk allele of the genetic variant in the
general population, and the OR of association between the
genetic variant and fracture, are important factors that affect
the clinical usefulness.

Assuming that the 5-year incidence of fracture is 10 %,
and that the risk threshold for treatment decision is 20 % (ie,
individuals with predicted risk >20 % are considered “high

risk”), then it can be shown by simulation [36] that a genetic
variant with OR between 1.1 and 1.4 is associated with an
AUC of between 0.52 and 0.55, and almost zero NRI. In the
above scenario, a genetic variant that confers an OR of 3 can
result in an AUC of 0.76 and NRI of 20 %.

The relative risk of fracture associated with hip fracture
for the COLIA1 genotype was 3.7. The AUC for a model
including age and BMD was 0.83, but when COLIA1 ge-
notype was added into the model, the AUC increased to
0.85 [37], a very modest improvement. None of the genetic
variants identified by GWAS achieved that magnitude of
association (eg, OR>1.5). Collectively, this suggests that
the contribution of any single gene to fracture prognosis,
no matter how large the effect size, is likely limited and
would not be useful particularly in clinical setting.

Genetic Profiling

It is now clear that the susceptibility to fracture is affected
by multiple genetic variants. It is not clear whether genetic
profiling could enhance the predictive accuracy of fracture
prediction because there is lack of empirical data. In the
absence of data, we have conducted simulation studies to
study the usefulness of genetic profiling using the method-
ology described by Pepe et al. [36], and the results can be
summarized in Fig. 1. For a given OR, the discriminatory
power and NRI increase proportionally to the number of
genetic variants. With 50 genetic variants, each with an OR
of ~1.1, the AUC value is expected to be 0.63; however, the
NRI is approximately 5 %. However, in genetic profiling
with 50 genetic variants, each with OR being ~1.3, the AUC
is expected to be 0.80, and NRI of 15 %.

Estimation of an individual’s risk of fracture, based on
clinical risk factors (eg, Garvan Fracture Risk Calculator or
nomogram [38, 39] and FRAX [40]), has increasingly
become established as a means of targeting preventive
interventions to those at highest risk. These risk assessment
models were based on demographic, anthropometric, and
clinical information. The prognostic performance of these
models has been mixed, with AUCs ranging between 0.65
and 0.80, depending on type of fracture and populations.
Thus, there is room for further improvement.

None of the existing predictive models has included
genetic or genomic data for predicting fracture risk. There-
fore, the question remains whether combining susceptibility
genetic variants in risk model could provide added value on
fracture risk for an individual. This question has been in-
vestigated by a partially simulated study, in which a set of
50 independent genetic variants (with allelic frequency being
0.01-0.60) were simulated so that ORs for fracture ranged
between 1.01 and 3.0 [41] in the Dubbo Osteoporosis
Epidemiology Study. Adding a simulated genetic profiling
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(in the form of a simple risk score) to the usual clinical risk
factor model, the AUC increased from 0.77 to 0.88, with
most of the improvement being in specificity, not sensitivity
[41]. These results suggest that genetic profiling could
enhance the predictive accuracy of fracture prediction.

However, the study [41] was based on some rather “op-
timistic” assumptions, which could overestimate the contri-
bution of genes to fracture prediction. All SNPs identified
by GWAS (Table 1) have a very modest association—albeit
statistically significant—with fracture, with ORs ranging
from 1.05 to 1.15. Assuming that there are 50 SNPs with
such magnitudes of association, it is expected that the AUC
value is ~0.72, which is significantly lower than that of the
model with existing clinical risk factors (age, BMD, prior
fracture, and fall; AUC00.77). However, when the 50 ge-
netic variants are added to the model with the clinical risk
factors, the AUC value was increased to 0.83, and the NRI
value is 21 %. Thus, the integration of genetic variants (in
the form of genetic profiling) can improve the accuracy of
fracture prediction beyond that obtained with conventional
clinical risk factors. More importantly, the incorporation of
genetic profiling into the current prognostic models could
significantly improve the “correct” reclassification of frac-
ture risk for an individual, and thus help improve treatment
decision.

Perspectives: Toward Individualized Prediction

During the past three decades or so, epidemiologic studies
have identified several risk factors for fracture. These risk
factors, including anthropometric, demographic, clinical,
physical, and behavioral factors, explain a modest propor-
tion of variance in fracture susceptibility. It is here that
genetics and genomics may have an important role in frac-
ture risk assessment. A large twin study reported that almost

50 % of the variance in liability to fracture was attributable
to genetic factors [10].

The recognition that fracture liability is partly due to
genetic factors has led to intense efforts to search for spe-
cific genetic variants for fracture. After decades of confu-
sion and disappointment with the candidate gene approach,
the search for genes using GWAS has been highly success-
ful. The hypothesis behind the GWAS approach is that
between-individual variation in the susceptibility to com-
mon diseases such as osteoporosis is attributable in part to
allelic variants present in 1 %–5 % of the population (ie, the
so-called “common disease–common variant” hypothesis
[42]). This hypothesis-free and unbiased approach has iden-
tified several genetic variants relevant to fracture risk. The
discovery of these genetic variants has generated opportu-
nities for translational research. At the heart of this research
is the creation of a genetic/genomic profile for individualiz-
ing risk prediction for clinical purpose. Genetic profiling
can help individualize fracture risk [43], which is a key
component of personalized medicine.

The translation of GWAS discoveries to clinical applica-
tion has proved to be a difficult process, because it requires
the accumulation and synthesis of knowledge in many
fields, including observational epidemiology and genetics.
However, recent studies have shown that the predictive
value of a single gene is very limited, and this can been
entirely expected by simple epidemiologic principles [44].
Nevertheless, we have shown that a combination of multiple
genetic variants in the form of genetic profiling could be
useful for fracture prediction. Even with 50 SNPs, each may
have only a modest effect size (ie, OR01.1–1.2), and can
yield an AUC of 0.72. It should be noted that the AUC value
for genetic variants has an upper limit. Wray et al. [45] have
elegantly shown that the AUC value for genetic profiling is
a function of disease prevalence and heritability of the
disease. For example, for hip fracture, the heritability index

Fig. 1 Area under the
receiver operating characteristic
curve (left) and percentage net
reclassification improvement
(right) as a function of
the number of genes and
magnitude of association
(odds ratio [OR]01.1, 1.2,
1.3, 1.4, and 1.5). Data were
obtained by simulation with
the following parameters:
gene frequency00.5, risk
threshold00.2, and 5-year
incidence of fracture00.1
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is 30 % [9, 10], and if the 10-year incidence of fracture is
20 %, the maximum AUC value is approximately 0.80.
Therefore, it can theoretically be speculated that the maxi-
mum discrimination of fracture by genes cannot be more
than 0.80.

Perhaps, more importantly, a recent study and simulation
have shown that genetic profiling could increase the
accuracy—mostly improved specificity—of fracture predic-
tion over and above that of conventional risk factors [41].
The integration of genetic variants can also have meaningful
impact on the risk classification for an individual. If this
finding is validated in independent populations, it opens a
new opportunity for integrating genetic data into the exist-
ing fracture risk assessment models, which usher toward the
era of individualized risk assessment.

The approach of individualized risk assessment or
individualized prognosis must be distinguished from the
approach of risk stratification. In risk stratification, the
estimate of risk is applicable to a group of individuals
rather than to an individual [46]. For example, the stratifica-
tion of BMD measurement into osteoporosis versus non-
osteoporosis based on the T-score splits two women with T-
scores of -2.45 and -2.50 into two distinct groups despite the
trivial numerical and biologic difference, and despite the
plausibility that the two women may have comparable risk
of fracture if other risk factors are considered. Moreover,
because of the broad categories, such a stratification ap-
proach classifies an 80-year-old women with T-score of -
2.5 and a 70-year-old women with T-score of -3.0 into a
single group, despite the fact that the two women have very
different risk profiles. In contrast to the risk grouping ap-
proach, the individualized prediction approach recognizes
that the four individuals are different, and that they should
have different fracture risks as one would logically expect.
Thus, although the risk grouping approach is conceptually
simple and sometimes useful in clinical practice, its predic-
tive value is poorer than the individualized approach due to
the arbitrariness of any numerical cutoff value [47].

The assessment of fracture risk has until now been largely
based on the measurement of BMD and a history of prior
fracture. This is appropriate, since there is a strong associ-
ation between BMD and the risk of fracture [48–50].
Furthermore, a history of fracture is also a strong risk factor
of subsequent fracture [51]. In the past, treatment initiation
was based on BMD measurement or the presence of a pre-
existing low trauma fracture. This strategy appears to be
logical and evidence-based because results from randomized
clinical trials show that treating these patients (eg, with
osteoporosis and/or a prior fracture) did reduce their fracture
risk [49, 52]. However, it has recently been recognized that
although the risk of fracture is directly related to BMD at all
levels, there is no threshold value for BMD that accurately
separates those who will from those who will not sustain a

fracture. Even at the lowest BMD range, only some individ-
uals will sustain a fracture; on the other hand, a high BMD
does not confer total protection against a fracture. It has
been shown that more than 50 % of women and 70 % of
men who sustained a fracture had not had osteoporosis [53]
as defined by bone density criteria alone. Therefore, the
dichotomization of BMD into osteoporosis versus non-
osteoporosis by a threshold can be ineffective at the popu-
lation level, because treatment of individuals with osteopo-
rosis by bone density definition will not reach the majority
of men likely to fracture in the general population.

Important changes are needed for that majority of indi-
viduals whose BMD measurements are at or near, on both
sides, the current threshold of osteoporosis. At any given
level of BMD, fracture risk varies widely in relation to the
burden of other risk factors, such as advancing age, gender,
genetics, family history of fracture, falls, and lifestyle fac-
tors. Thus, for any one individual, the likelihood of fracture
depends on a combination of these and other risk factors
[49]. This means that two individuals, both with “osteopo-
rosis,” can have different risks of fracture because they have
different genetic risk profile. Similarly, an osteoporotic in-
dividual can have the same risk of fracture as a non-
osteoporotic individual due to the difference in genetic
profiles between the two individuals. In other words, the
prediction of fracture risk can and should be individualized
by using an individual’s unique risk profile.

Medical practice is concerned with an individual, and
each individual is unique, because there exists no “average
individual” in the population. Individualized assessment of
risk—or the prediction of risk for an individual given a risk
profile—is fundamentally important. The more risk factors
that are considered, the greater the likelihood of uniqueness
of an individual’s profile being defined. Therefore, genetic
profiling can define the uniqueness of an individual, and
thus better predict the risk for the individual.

There are some major advantages of using genetic var-
iants as a prognostic factor of fracture risk. Since an indi-
vidual’s genetic profile is time-invariant, the risk of fracture
for the individual can be predicted at younger ages, well
before the conventional risk factors become apparent. Al-
though there is no “genetic” therapy for individuals at high
risk of fracture, the use of genetic variants could help
segregate individuals at high risk from those with low risk
of fracture, and help counseling services.

Individualized Risk Assessment

It is appropriate that individuals with high risk of fracture,
regardless of their BMD levels, should be considered for
treatment because there is evidence that treating these
individuals could yield clinical benefit. However, what level
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(or levels) of risk should be regarded as “high risk,” so that
an intervention can be considered cost-effective? The indi-
vidualization of fracture risk can help select patients suitable
for intervention. In a recent analysis, it was suggested that
treatment is cost-effective (based on the criteria of £30,000
per quality-adjusted life-year gained) if an individual’s 10-
year risk of hip fracture is between 1.2 % and 9.0 %,
dependent on age [54]. It has been estimated that for a 50-
year-old Australian, treatment would be considered cost-
effective if his 10-year risk of hip fracture is at least
1.93 % [54]. However, for a 90-year-old man, the treatment
would only be cost-effective if his 10-year risk is 10.8 % or
higher. Thus, the incorporation of genetic variants into an
existing predictive model can help improve the cost-
effectiveness of fracture management.

The individualization of fracture prediction can also be
used to optimize the number needed to treat (NNT). In
several randomized clinical trials the NNT to reduce one
vertebral fracture (compared to the untreated group)
ranged between 8 and 83 [55]. For hip fracture, the
NNT ranged between 91 and 250 [55, 56]. The NNT
varies inversely with the background risk, such that treat-
ment of high-risk individuals inherently yields lower
NNT. The large variability in the NNTs among trials is
assumed to be due to the variability in fracture rates
among the study samples, despite the fact that patients
were selected on the basis of having osteoporosis and/or a
prevalent vertebral fracture. However, the variability is
expected given the multiple risk factors, including genetic
variants, that affect the risk of fracture. In the presence of
such variability, selecting patients based on their unique
clinical and genetic profile (rather than based on a BMD
threshold value) may improve the consistency of thera-
peutic efficacy and efficiency of trials.

Trials specifically testing the efficacy of multivariable
risk-based therapy have not been done. As a result, it is
not known whether treatment of individuals selected on the
basis of absolute risk of fracture will result in reduced
fracture risk. One clinical trial [57] randomized 5212 women
aged 75 years and older into two groups: placebo receiving
calcium and vitamin D, and the treatment group receiving
clodronate (800 mg daily po). Ten-year probability of frac-
ture was computed for each woman using baseline clinical
risk factors including body mass index, prior fracture, glu-
cocorticoid use, parental hip fracture, smoking, alcohol, and
secondary osteoporosis. In women in the top 25th percentile
of fracture probability (average probability of 24 %), treat-
ment reduced the risk of fracture by 23 % over 3 years
(hazards ratio [HR] 0.77, 95 % CI 0.63–0.95). Importantly,
among those in the top 10 % percentile (average fracture
probability of 30 %), treatment reduced the fracture risk by
31 % (HR 0.69, 0.53–0.90) [57]. These data are consistent
with the hypothesis that treating individuals at high risk or

moderate risk could reasonably be expected to reduce
fractures.

Problems with Current Models

However, it should be noted that all models considered so
far are somewhat simplistic. These models have assumed
that genetic variants are inherited independently, and that
their effects on fracture are independent of each other (ie, no
interaction effect or epistasis). While no gene-gene interac-
tion effect has been identified, such effect is likely to be
identified in the future when data are adequately accumu-
lated. At the individual level, the gene-gene interaction
predicts that two individuals can have different fracture risk
even if they share the same genotype at one locus. At the
population level, epistasis suggests that a heterogeneity and
incomplete penetrance of fracture is expected. However, the
gene-gene interaction has not been taken into account in
virtually all studies, and that could partly explain the
phenomenon of “missing heritability” [58, 59].

Of course, genetics is unlikely the only factor that affects
the risk of fragility fracture. Environmental factors, includ-
ing hormones and behavioral factors, also contribute to
fracture susceptibility [8, 60–62]. It can therefore be hypoth-
esized that the risk of fragility fracture is a function of
interaction between the time-invariant genes, and exposure
to environmental factors. Consequently, the risk of fracture
for an individual has to be considered not just in terms of
gene-gene interactions, but also in terms of environmental
context (ie, gene-environment interactions). However,
virtually all genetic analyses of osteoporosis have not
considered these interactions, and that could partly account
for the incomplete prediction.

Conclusions

The assessment of fracture risk for an individual is currently
based on conventional clinical risk factors. However, recent
GWAS have identified several common genetic variants that
are moderately associated with fracture risk. Moreover,
simulation studies have shown that these genetic variants,
despite their modest effect sizes, can yield predictive value
beyond conventional clinical risk factors when integrated
into existing fracture risk assessment tools such as the
Garvan Fracture Risk Calculator [38, 39]. These genetic
variants, together with established clinical risk factors, can
provide a useful index of risk for an individual. This
individualized index will potentially helps clinicians to
tailor treatment to an individual and to make informed
choices relating to lifestyle and preventive intervention.
However, the incomplete discrimination and accuracy of
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prediction—most likely related to the incomplete coverage
of relevant variants and failure to take into account the gene-
gene and gene-environment interactions [59]—remains a
major challenge. With a rapid improvement in genotyping
technology, the next generation of GWAS will be adding
more variants at a low frequency to cover as many SNPs as
possible. Advances in modeling approaches will refine the
genetic profiling and allow a better assessment of fracture
risk and individualized fracture prevention.
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