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*S Supporting Information

ABSTRACT: Incorporating backbone flexibility into pro-
tein−ligand docking is still a challenging problem. In
protein−protein docking, normal mode analysis (NMA) has
become increasingly popular as it can be used to describe the
collective motions of a biological system, but the question of
whether NMA can also be useful in predicting the conforma-
tional changes observed upon small-molecule binding has only
been addressed in a few case studies. Here, we describe a large-
scale study on the applicability of NMA for protein−ligand
docking using 433 apo/holo pairs of the Astex data sets. On
the basis of sets of the first normal modes from the apo structure, we first generated for each paired holo structure a set of
conformations that optimally reproduce its Cα trace with respect to the underlying normal mode subspace. Using AutoDock,
GOLD, and FlexX we then docked the original ligands into these conformations to assess how the docking performance depends
on the number of modes used to reproduce the holo structure. The results of our study indicate that, even for such a best-case
scenario, the use of normal mode analysis in small-molecule docking is restricted and that a general rule on how many modes to
use does not seem to exist or at least is not easy to find.

■ INTRODUCTION
The molecular basis of diseases resides in processes pertaining
to the function and interaction of proteins and other biological
macromolecules. With the help of computer-aided drug design,
potent drugs can be developed that influence the activity of
these molecules and lessen or neutralize the effects of
functional disorders. Such drugs can, for example, stimulate
signal-transduction pathways, inhibit a protein’s catalytic
function, modulate protein−protein interactions, or change
the rate at which a gene is transcribed.1−4

However, the accurate and fast prediction of promising
candidate molecules and the correct protein−ligand complex
conformationpreferably combined with an accurate estima-
tion of the respective binding affinitiesis still an unsolved
problem. To be useful in a high-throughput virtual screening,
docking must be computationally very efficient but still produce
reliable results.5,6 However, fast and accurate scoring functions
that efficiently guide the search for the final protein−ligand
complex are currently not available, and probably will not be in
the near future. To make matters worse, the energy landscape
of the protein changes through the binding of a ligand: on the
one hand, the ligand itself changes the landscape by establishing
interactions with the protein, and on the other hand, both
protein and ligand are not rigid bodies but are able to undergo
substantial conformational changes.7−9 To tackle these
problems in a reasonable computation time, docking algorithms

are forced to apply simplifications that, however, typically
reduce the accuracy of the predictions.
In this context, the treatment of ligand and protein flexibility

must usually be different. While ligands are chemically much
more diverse than proteins, they contain significantly fewer
degrees of freedom. Thus, approaches to handling ligand
flexibility use different global optimization schemes, such as
Monte Carlo methods, e.g. ICM10 or LigandFit,11 genetic
algorithms such as AutoDock12 or GOLD,13 incremental
construction like FlexX,14 or grid-based methods like
Glide.15,16 Protein flexibility, in contrast, requires a different
strategy, since here the number of degrees of freedom becomes
forbiddingly large, even for small proteins. In a first step, the
protein’s movements are decomposed into side-chain rear-
rangement and backbone movement. Side-chain conformers
can be described suitably by a discrete set of rotamers,17 but
optimizing their arrangement via exhaustive sampling incurs the
risk of combinatorial runtime explosion. Most of the earliest
methods able to capture small induced fit effects18 thus
concentrated on locally sampling the side-chain conformations
of the active site during the docking process.19−27 Others used
pregenerated protein ensembles and, in some cases, also
considered different backbone conformations.28−35 Such
molecular structure ensembles are assumed to be representative
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for the conformational space the protein can explore, but they
usually fail when large-scale backbone movements are involved,
as for example observed in HIV-1 protease36 or aldose
reductase.37

To describe such conformational alternatives of proteins,
different techniques can be applied. One possibility is to carry
out a principal component analysis of movements, determined
by MD simulations.38,39 These so-called essential modes have
been shown to improve the docking performance signifi-
cantly.40,41 But because MD simulations are computationally
expensive, approximating the global dynamics of proteins by
normal mode analysis (NMA) on the basis of coarse-grained
elastic network models (ENM)42 has become increasingly
popular over the last years. Due to its ability to reproduce the
collective motions of proteins without significant loss of
accuracy,43−51 NMA has been applied to many different
problems, for example protein domain decomposition,44,52,53

guiding MD simulations along normal modes,54,55 or fitting
proteins into electron density maps obtained from cryo-EM or
X-ray crystallography.56−59

Besides the convenient strategy to use the Cα trace of the
backbone, sets of atoms or residues can be combined into
blocks.60−64 Other approaches explore subsets of protein
components,65−67 use additional grains that represent side-
chain centroids,68 or employ a mixed coarse-graining with a
higher resolution in important protein regions.69 So far, several
studies have established the ability of elastic network models to
also predict conformational changes during protein−protein
docking.70−73 Moreover, a recent paper has proposed a
sophisticated method to sample protein conformations using
an ENM.74

However, in protein−ligand docking, the binding interfaces
are typically much smaller than in protein−protein docking and
there are theoretical arguments for the assumption that normal
modes may not be suitable to model backbone movements
involved in ligand binding. On the one hand, the primary
purpose of normal modes is to describe large-scale collective
motions of a system and thus they may not be able to model
the more local movements related to ligand binding. On the
other hand, differences between several conformations of the
same protein which are interpreted to be due to protein motion
may, in fact, be the result of uncertainties in the coordinates of
experimentally determined structures. Thus it may not be
adequate to use normal modes to interpret such differences.
However, despite these assumptions, normal modes have
already been successfully applied in select cases of protein−
ligand docking as, for example, in two studies using normal
modes from heavy-atom and all-atom ENM.75,76

These studies indicate that conformational changes observed
in protein-small molecule binding may, in some cases, only be
modeled when using noncollective modes. The question arises
how this observation translates to coarse-grained ENMs using
Cα atoms, where the number of modes is drastically reduced,
and how suitable they are for such problems where alternative
protein conformations are needed to improve docking results.
In this context, May et al. have shown in a cross-docking study
with six different CDK2 inhibitors77 that NMA can significantly
improve docking results while Cavasotto et al. have reported
similar results in their study with cAPK.78

In this study, we thus investigate on a larger scale how
suitable binding-pocket restricted normal modes from a Cα-
ENM are for protein−ligand docking, with a focus on high-
throughput applications. By establishing a best-case scenario for

conformational sampling on a diverse data set derived from the
Astex Diverse79 and Non-Native80 Set, we evaluate how the
number of modes used to reproduce a ligand-bound (holo)
conformation from its respective unbound (apo) state
influences the docking accuracy. The corresponding ligands
are docked into the reproduced holo structures using
AutoDock,12 GOLD,13 and FlexX.14

■ MATERIALS AND METHODS
Normal Mode Analysis for Elastic Network Models.

The aim of performing a normal mode analysis (NMA) on
biological macromolecules81,82 is to determine the global and
energetically most favorable motions of a system close to its
energetic minimum. Here, the assumption is that a protein in
an energetically stable conformation oscillates harmonically
around this equilibrium. A normal mode represents a collective
motion within such a system at a certain oscillation frequency.
Each mode has its own unique frequency which is proportional
to the energy required with respect to the underlying potential
to perform a unit length motion along the mode.
To determine these modes, we use an elastic network model

(ENM),46 an extension of the Gaussian network model
(GNM),43−45,47 that accounts for the anisotropy of motions
of a system’s components in Cartesian space. Here, an artificial
harmonic potential V is constructed around an assumed
minimum energy protein conformation R0 consisting of N
mass points (Cα atoms in our case), such that R0 becomes the
minimum conformation of V. The potential energy of a
conformation R in this elastic network model is given by
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The quadratic term describes a spring between two mass points
i and j that is relaxed in R0. It can be easily seen that V(R) = 0
when R = R0 and V(R) > 0 anywhere else. Furthermore, to
scale the influence of each spring according to the distance of
the participating mass points, each spring is assigned a spring
constant by a function k(d) which decreases with the distance d
between the involved mass points. In this way, close spatial
neighbors can be made to contribute more strongly to the
potential than remote atoms.
Taylor expansion of V(R) around the minimum R0 up to

second order yields

= − −V R R R H R R( ) 1
2

( ) ( )0 T 0
(2)

where H is the Hessian matrix containing all second partial
derivatives of V evaluated at R0 (a detailed derivation of the
Hessian in an ENM can, for example, be found in the work of
Atilgan et al.46).
By construction, H is positive semidefinite and hence has real

eigenvectors and all eigenvalues are either positive or zero. The
normal modes are defined as the eigenvectors U of H, which,
together with the eigenvalues Λ, are obtained by carrying out
an eigenvalue decomposition on the Hessian:

Λ=H U UT (3)

Usually, the normal modes are sorted in ascending order with
respect to their eigenvalues as these correspond to the energetic
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cost required to perform a unit length movement along a mode
in the energetic model of the ENM. Modes that require little
energy are considered the most collective ones, i.e. the
associated motion involves a large part of the underlying
system. The first six modes have zero eigenvalues and
correspond to the translational and rotational degrees of
freedom of the whole systemin the case of an elastic network
model, these obviously require no energy.
Extracting Binding Pocket Normal Modes. In protein−

ligand docking, we are especially interested in the conforma-
tional changes of the binding site. But by calculating the normal
modes for the whole protein, we will obtain many normal
modes that are associated with collective movements elsewhere
in the protein. Hence, to restrict the normal mode set to those
modes that are collective for the binding pocket and thus
relevant for protein−ligand docking, we use an approach
described in the work of Zheng et al.65 and Ming et al.:66 we
divide the protein into two components, the binding pocket
and the remaining protein, by rearranging H such that we
obtain four submatrices:

=
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥H

H H

H H
pp pe

ep ee (4)

Hpp and Hee contain the couplings within binding pocket and
environmental protein, respectively, and Hep and Hpe, those
between pocket and the remaining protein. We can now
assume that upon a conformational change rp in the binding
pocket, the environmental residues perform an adaptive
movement re that minimizes the total energy in the elastic
network. re is given by

= − −r H H re ee
1

ep p (5)

Under this assumption, we define the effective Hessian for our
binding pocket as

= − −H H H H Heff pp pe ee
1

ep (6)

The normal modes Ueff for the binding pocket can then be
obtained from Heff using eq 3. The resulting modes provide an
orthonormal basis set which is again sorted in ascending order
according to the modes’ eigenvalues and thus to their degree of
collectivity. Hence, the first modes describe the most collective
motions within the subsystem represented by Heff. The adaptive
modes for the remaining protein can be calculated from Ueff
and eq 5.
Data Set. The data set we used is derived from the Astex

Diverse79 and the Astex Non-Native Set.80 The Astex Diverse
Set comprises 85 diverse protein crystal structures, bound to
drug-like ligands, with a resolution of less than 2.5 Å. The
structures have been automatically and manually checked for
structural problems, i.e. clashes, interactions with symmetry
units, and dubious ligand binding. The Non-Native Set was set
up analogously and consists of 1112 non-native (alternative)
protein conformations − apo structures as well as holo
conformations with corresponding ligands − for 65 of the
reference structures contained in the Diverse Set. The binding
pockets of the non-native structures are unmutated with respect
to those of the reference structure and have been superimposed
onto the reference pocket for a better comparability of the
results of cross-docking studies.
In our study, the aim is to address the question whether and

if so, how well, reduced sets of normal modes can model

conformational changes observed during binding of small
molecules. We thus chose only reference structures with at least
one apo structure in the Non-Native Set to avoid bias of the
protein backbone conformation toward any ligand.
For each of the 29 remaining reference structures, we

determined the residues that are involved in substrate binding
in any of the corresponding holo structures and are thus
associated with possible conformational changes in the protein
binding site: we first independently defined the binding pocket
for each holo structure as consisting of those residues that have
at least one heavy atom within a distance of 6.0 Å to a heavy
atom of the corresponding ligand. These pockets were then
aligned and merged into one extended active site (EAS) that
comprises for each conformation all the residues that are in
contact with any of the ligands. The respective residues make
up the residues contributing to Heff; the remaining residues
form the environment which is assumed to perform an adaptive
movement that minimizes the global energy required for the
conformational changes in the binding site.
For each of the 29 reference structures, we only kept those

apo/holo pairs that have no mismatches or indels in the EAS
between apo and holo structure. The resulting data set
consisted of 283 apo/holo pairs from 20 reference structures,
with 260 having a Cα-rmsd (root mean square deviation) below
0.5 Å in the EAS.
To gain more data on structural differences exceeding a Cα-

rmsd of 0.5 Å while keeping the effect of structural mutations
on the protein dynamics small, we decided to also incorporate
apo/holo pairs with a Cα-rmsd of at least 0.5 Å and at most five
mismatches which, however, must not occur within the EAS. In
this way, we augmented our data set by 150 additional apo/
holo pairs while ensuring that the docking results do not suffer
from mutations in the binding pocket. The complete data set
contains 433 apo/holo pairs from 21 different reference
structures. A distribution of the Cα-RMSDs can be found in
Figure 1. Each structure in this data set was converted into pdb

format; missing atoms and side-chains were added with
BALL.83 The corresponding ligands were converted into
mol2 format using OpenBabel.84

Establishing a Best-Case Scenario. From the apo/holo
pairs of the data set derived in the previous section, we then
generated intermediate structures that optimally reproduce the
holo conformation. For each apo structure, we first calculated
the effective modes Ueff for the residues contained in its EAS as

Figure 1. Distribution of Cα-rmsds in the extended active site.
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described in the previous sections and established subsets of the
first m (m = 10%, 20%, ..., 100%) of these modes.
Given the space S spanned by such a subset,

=S U Uspan{ , ..., }m1 (7)

we then orthogonally projected the conformational difference
between apo and holo binding pockets, RA and RH onto S:

= −P S R R( )H A (8)

From this projection, we can then obtain the amplitudes A for
the modes that minimize the distance between this projection
and the space S:

= −A S S P( )T 1 (9)

We can then generate an approximate conformation RH* of the
holo binding pocket from that of the apo structure with respect
to the underlying space S by

* = +R R ASH A (10)

Due to the orthogonal projection, the distance between the Cα
trace of the holo conformation, RH, and RH* is minimal with
respect to S. Thus, a conformational sampling in the same
subspace can never yield a conformation that is closer to the
original holo structure than our intermediate structure. Our
intermediate structures can thus be considered as an upper
bound for the accuracy achievable with conformational
sampling algorithms with respect to the underlying normal
mode subspace.
Applying the above procedure to each of the generated mode

subsets leads to increasingly well reproduced holo Cα
conformations. This makes it possible to investigate how the
docking performance relates to the number of modes used to
reconstruct the holo conformation and to estimate how many
modes are needed to sufficiently reproduce the conformational
change upon ligand binding.
To prepare these conformations for docking, the all-atom

structures were reconstructed by translating the side-chains and
remaining backbone atoms according to the displacement of
the corresponding Cα atom. We then relaxed the resulting
structure for 0, 10, and 50 steps using the AMBER9685 force
field and an L-BFGS minimizer86,87 to resolve possible steric
clashes between side-chains and/or backbone atoms while
keeping Cα atoms fixed. In this context, when using all available
modes (m = 100%), we obtain a so-called 100% reconstructed
holo conformation, i.e. the Cα trace of the holo conformation
binding pocket is exactly reproduced while the remaining part
of the protein (side-chains, non-Cα backbone atoms) may show

deviations from the original holo structure due to the
reconstruction procedure. A validation of this reconstruction
procedure can be found in the Supporting Information.
With this procedure, we obtained 33 intermediate structures

per apo/holo pair, in total. The full data set to be docked
contained 15 304 protein conformations derived from 433 apo/
holo pairs and the original holo structures (see the Supporting
Information for more details on the data set composition). A
schematic representation of our best-case scenario is given in
Figure 2.

Docking Experiments. To analyze the quality of the
structures with respect to docking, we performed two different
docking rounds. In the first round, we investigated the
capability of normal modes without considering the side-
chain conformations. We established six different docking
protocols, consisting of a standard and a soft docking setup for
each of the docking programs AutoDock,12 GOLD,13 and
FlexX.14 The standard protocols used the default parameters of
the respective docking program; for AutoDock and GOLD, the
number of runs was set to 25 in both the standard and soft
docking protocol. Furthermore, for the soft docking protocols,
we adjusted the parameters to reduce the impact of steric
clashes. In AutoDock, FE_coeff_vdW was reduced by a factor
of 0.5 while in GOLD, start_vdw_linear_cutoff was set to 4
and the binding pocket residues were assigned a 2−4 vdW
potential. In FlexX, MAX_OVERLAP_VOL and DOT_O-
VERLAP_VOL were increased by a factor of 1.5.
In the second round, side-chain flexibility was explicitly taken

into account as it can have a significant impact on the docking
performance. We therefore selected those apo/holo pairs from
the first round for which the ligand could be successfully
redocked into the original holo structures (i.e., with a minimum
pose rmsd below 2.0 Å) with at least one of the above-
described docking protocols, but failed to do so for the 100%
reconstructed holo conformation. We established three addi-
tional docking protocols that account for side-chain flexibility.
AutoDock directly incorporates side-chain flexibility (at the
cost of greatly increased runtimes), but the maximum number
of torsions is restricted to 32. We thus iteratively chose binding
pocket residues with growing distance to the ligand as long as
the total number of torsions did not exceed this threshold. The
second protocol uses FlexX with binding pocket side-chain
conformations generated with SCWRL,88 the third employs
FlexE29 with side-chain ensembles derived with IRECS89

(rotamer density 3 and at most 3 additional side-chain
conformations per binding pocket residue). All protocols
used the default parameters of the respective docking

Figure 2. Schematic description of our best-case scenario (shown for acetylcholinesterase, pdb code 1gpk). The native ligands are sequentially
docked into a set of increasingly well reconstructed holo conformations to assess how the docking performance depends on the number of modes
used for the reconstruction.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci2004847 | J. Chem. Inf. Model. 2012, 52, 844−856847

http://pubs.acs.org/action/showImage?doi=10.1021/ci2004847&iName=master.img-002.jpg&w=301&h=117


algorithm; the number of runs for AutoDock was again set to
25.
In contrast to the EAS which is used to define the residues

supposedly involved in the backbone movements relevant for
the binding pocket, for both docking rounds, we used the
smaller, ligand-specific binding pocket which we defined as
consisting of all residues with heavy atoms within a distance of
at most 6.0 Å to any of the ligand’s heavy atoms.
The resulting docking poses were evaluated by calculating

the symmetry-corrected rmsd to the crystallized ligand
structure using the smartrms program included in GOLD.
However, the docking poses also depend on the used protein
conformation. The reconstructed structures are not identical
with the original holo structure, and the rmsd between the
crystallized ligand and the docked pose may thus be biased
toward the input protein conformation. But the ligand may
nevertheless be able to adapt itself to slightly different protein
conformations and establish the same interactions as present in
the crystal structure. We thus additionally calculated the
symmetry-corrected fraction of native ligand contacts of the
crystal structure realized in each docked pose. The ligand
contacts were determined using HBPLUS and HBADD90 as
implemented in LigPlot;91 the symmetry-corrected fraction of a
pose is given as the maximum fraction of native ligand contacts
over all its automorphisms as calculated by OpenBabel.84

■ RESULTS AND DISCUSSION
Analysis of Normal Mode Amplitude Spectra. The

general assumption in protein−protein docking as well as
conformational studies of proteins is that only a few modes are
required to reproduce most collective, global conformational
changes that the protein is able to perform.
To investigate whether this assumption also holds in the

protein−small molecule docking case, we thus first compared
the mode amplitude spectra for a full reconstruction of the Cα
trace of different holo structures using the normal modes
obtained from the effective Hessian (for the selection of an
optimal spring force function and a comparison to normal
modes computed from force-field derived Hessians, please see

the Supporting Information) of one common apo conforma-
tion. If the initial assumption also holds for protein−small
molecule docking, the used modes and the corresponding
amplitudes should be similar for a reconstruction of different
holo conformations. Figure 3 shows such a spectrum for the
protein dihydrofolate reductase (for a better insight into the
differences, the absolute amplitude values are shown). The
modes are sorted by increasing eigenvalues, such that only the
first few modes should suffice to represent a conformational
change if the fundamental assumption behind the normal
modes procedure is valid.
The main difference between the displayed structures

comprises a conformational change in two loops, while the
rest of the system remains relatively rigid. While these
movements do not involve the entire protein, they exhibit a
certain amount of collectivity on the scale of the binding
pocket, on which we focus with our effective Hessian approach.
Hence, the spectrum should contain regions with a clearly
similar behavior for all holo structures.
It can be clearly seen that this is not the case: not only do the

amplitudes differ, but also modes that strongly contribute to
reproducing one conformation have almost no influence for
other conformations and vice versa, a fact which makes an a
priori selection of relevant modes difficult. For example, a
conformational change from 1pdb to 1s3v (red) requires a large
amplitude for mode 23, while a reconstruction of 1drf (blue)
can be performed very accurately without using that mode. On
the other hand, generating the backbone conformation of 1drf
cannot be achieved without using mode 58 (with an even
higher amplitude than mode 23 for 1s3v) while this mode plays
almost no role for 1s3v.
One reason for this difference in the relevance of modes is

that the eigenvalues which correspond to the energy required to
perform a movement along a mode are very similar for a large
fraction of the modes: a protein that is excited by a certain
amount of energy distributes this energy evenly among all its
degrees of freedom. Movements that require less energy thus
dominate those that need much energy. However, if there are
many energetically similarly demanding modes, the space of

Figure 3.Mode amplitude spectra for a reconstruction of different dihydrofolate reductase holo structures from one single apo structure (1pdb). The
modes are sorted by increasing eigenvalues. Modes and amplitudes (dimensionless scalar factors) differ for a reconstruction of the individual holo
conformations.
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possible motions grows exponentially and the conformations
become more diverse, as a result. In addition, elastic network
models do not account for anharmonic motions, which may
become especially important for small-scale, local backbone
movements; a fact that may also contribute to the different
relevance of the modes. Furthermore, a bound ligand can shift
the minima on the protein energy landscape and, thus,
conformations that are less likely in the absence of a ligand
may attain a lower overall energy in the bound complex due to
favorable interactions with a ligand. This is in concordance with
the observation that, as soon as the eigenvalues increase
significantly (approximately mode 130 in the case of 1pdb), the
mode amplitudes decrease for the whole set of reconstructed
holo conformations.
The results for the whole set of apo/holo pairs are

summarized in Figure 4 and confirm the findings detailed for
dihydrofolate reductase: the distribution of the number of
modes with an absolute amplitude greater than average
indicates that a sampling in a small set of modes is not
sufficient to reconstruct a holo structure with high accuracy. On
average, 51 modes are responsible for the largest part of the
conformational shift, an observation that is consistent with the
results shown in Figure 3. The corresponding fractions of
modes (Figure 4b) to be used range from 0.19 to 0.46 with a
mean value of 0.34. Accordingly, at least one-third of all modes
must be considered in a conformational sampling.
However, an a priori selection of modes seems hard at best,

as the amplitude vectors greatly differ in their composition
between complexes with different ligands. Figure 4c shows the
distribution of pairwise angles between amplitude vectors for a
reconstruction of different holo structures from the same apo
conformation. The main fraction of angles lies between 50° and
90° (mean value 63.1°), a fact that not only confirms the
assumption that the relevance of modes highly depends on the
bound ligand, but also shows that many amplitude vectors are
almost perpendicular to each other and that modes which are
switched off in one complex are essential in another. Thus, in
the normal case that the bound conformation is unknown and
an a priori predictor for the modes relevant for individual
ligands does not exist, the number of modes that has to be
sampled can be expected to be well above the average number
of 51.
Docking into Reconstructed Holo Structures. The

analysis of the mode amplitudes has shown the highly diverse
nature of transitions from apo to different holo structures and
demonstrated that the important modes are distributed over
almost the full range of modes. However, it has yet to be

clarified whether all these modes or only a subset of the most
collective ones (i.e., those with the lowest eigenvalues) are
required to achieve a conformational change that results in a
successful docking of the ligand.
We established 18 docking series, consisting of 6 different

protocols using AutoDock, GOLD, and FlexX each in a
standard and a soft setup, for each of the 3 different
minimization lengths (0, 10, and 50 steps). While many
(partially contradictory) studies that compare the performance
of different docking tools exist, our primary aim of using
different docking programs here is to ensure that the obtained
results are not due to peculiarities of any of these tools. We thus
do not compare the actual performances of the different
programs but rather use them to frame a stable picture of the
capability of normal modes to improve small-molecule docking.
In some cases, the docking failed due to structural problems,
e.g. when the reconstruction procedure produced irresolvable
clashes or the atom types could not be assigned properly. The
missing results were interpolated using natural splines; eight
apo/holo pairs were excluded because they produced five or
more missing values in at least one of the docking series.
Figure 5 illustrates the docking results for the remaining 425

pairs for each docking series. The results have been normalized
to account for the unbalanced distribution of the number of
apo conformations associated with each holo structure and the
number of holo structures per protein. In addition to the data
series for the three minimization protocols, a minimum
envelope (ME) curve which considers only the optimum
value obtained from the three protocols for each apo/holo pair
and a linear least-squares fitted line for the ME curve are shown
in each plot. For the data points on the ME curve in the pose
rmsds, the standard errors in the mean are also shown.
In the ideal case, one would expect a steep decrease of the

minimum rmsd for the most collective modes that diminishes
as the normal mode subspace grows. This would indicate that
only the first modes are required to produce a conformational
change that is sufficient for a successful docking. However, in
our best-case scenario, the overall drop in minimum rmsd is
small and essentially linear (Figure 5a). This tendency is
observable in each of the 18 docking series and even more
imminent in the ME curves. Regardless of the actual docking
performance of the different protocols, the reduction in rmsd
compared to the docking results with the apo structure is at
most 0.6 Å (mean value 0.4 Å) when including 100% of the
modes in the holo reconstruction; for the first 20% of the
modes the average reduction amounts to only 0.26 Å. This
behavior is also reflected by the fitted lines: the steepest decay

Figure 4. Distributions of the number (a) and fraction of modes (b), as well as the pairwise angles between amplitude vectors (c) for a
reconstruction of different holo structures from the same apo structure.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci2004847 | J. Chem. Inf. Model. 2012, 52, 844−856849

http://pubs.acs.org/action/showImage?doi=10.1021/ci2004847&iName=master.img-004.jpg&w=503&h=136


was found to be −0.0046 with a residual sum of squares (RSS)
of 0.07. The standard errors of the means for the 100% (and
0%) reconstruction in the standard protocols of AutoDock,
FlexX, and GOLD are 0.24 (0.26), 0.20 (0.22), and 0.28 (0.25),
respectively. The values for the soft protocols are comparable,
indicating a significant improvement in all six protocols.
Similarly, the maximum fraction of native contacts (Figure

5b) grows linearly and increases by at most 0.081 when
including all modes, and only by 0.049 for the first 20% of the
modes. The fitted ME lines have a maximum slope of 0.00042
with an RSS of 0.0015.
We also investigated the top scores and the corresponding

poses (data not shown), and the results reveal another factor
that negatively affects the usability of normal modes for

sampling binding pocket conformations: the top scores differ
by ≈8%, on average, between apo and the reconstructed holo
structures, which is far below the standard deviation of scores
obtained from a typical docking run. A linear least-squares fit
gave a maximum decay of −0.023 with an RSS of 1.68, showing
that there is basically no decline in the top scores. Likewise, the
top-pose RMSDs were reduced by at most 0.5 Å using a full
reconstruction and only 0.17 Å for the first 20% of the modes.
These results show that, even in the case that a conformational
sampling in the most collective modes would reproduce the
original holo structure, it will be difficult to find the correct
protein−ligand complex in the set of generated protein
conformations with today’s scoring functions, unless additional

Figure 5. Best pose rmsd (a) and maximum fraction of contacts (b) for holo reconstructions with an increasing normal mode subset size averaged
over the full data set.
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terms that estimate the plausibility of the different protein
conformations are incorporated.
Because normal modes are expected to reproduce the large-

scale motions of a protein especially well, we also investigated
the subset of 165 apo/holo pairs with a Cα rmsd >0.5 Å (Figure
6). The results are mostly comparable to those on the full data
set: Due to the larger conformational difference between apo
and holo structure, the best-pose rmsds obtained from docking
into the apo conformation are larger on average than for the full
data set (compare Figure 5).
The standard errors of the means for the 100% (and 0%)

reconstruction in the standard protocols of AutoDock, FlexX,
and GOLD have values of 0.36 (0.46), 0.43 (0.47), and 0.54
(0.39), respectively. This implies that, at least in some cases, the

significance of improvement in docking performance is
questionable; however, both AutoDock protocols and the
GOLD standard protocol can be considered to achieve a
significant improvement.
In comparison to the full data set, the best-pose rmsd

decreases faster as more modes are used to reconstruct the holo
structures. But the decay in rmsd is, in essence, still linear
(maximum slope of the linear least-squares fit −0.0085, RSS
0.12) and the best-pose rmsds for the 100% reconstructed holo
conformations are 0.36 Å greater than those of the full data set,
on average.
The best results for a single protein (data not shown) were

obtained for aldose reductase (pdb code in the Astex Diverse
Set: 1t40) where the best-pose rmsd resulting from docking

Figure 6. Best pose rmsd and maximum fraction of contacts for holo reconstructions with an increasing normal mode subset size averaged over the
subset of apo/holo pairs with a Cα rmsd >0.5.
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into the apo structure consistently dropped from values of
between 3.89 and 4.34 Å to below 2.0 Å after an inclusion of
50% of the modes in four of the six docking protocols.
Although such an increase in performance seems encouraging,
at first sight, using 50% of the modes is still an infeasible task
for a conformational sampling, especially in a high-throughput
setting.
These findings indicate that, even for larger Cα RMSDs, the

movements in the binding pocket upon ligand binding are not
collective enough to be represented by a small set of normal
modes, in general. Thus it may be indispensable to use the
ligand in some way to perform a preselection of the required
modes, or to directly guide the conformational change upon
ligand binding. To do so seems difficult, however, given the
problems of today’s scoring functions in discriminating between
correct poses and decoys.
Docking with Side-Chain Flexibility. In this section, we

study how strongly the previous results depend on the side-
chain conformations in the binding pocket. To this end, we
selected the 59 apo/holo pairs from our data set that were
successfully redocked into the original holo structure with a
best-pose rmsd of less than 2.0 Å in at least one of the docking
series but failed to do so for the corresponding 100%
reconstructed holo structure. Because the Cα trace of this
structure is identical to that of the crystal holo structure, the
problem reduces to non-Cα backbone atoms and, more
importantly, the side-chain conformation.
Figure 7 shows the results for the three additional docking

protocols: AutoDock with flexible side-chains, FlexE with
IRECS-computed side-chain ensembles, and FlexX using side-
chains generated with SCWRL. AutoDock with flexible side-
chains as well as SCWRL+FlexX show no clear tendency
toward an improvement, the fitted ME lines have slopes (RSS)
of −0.0005 (0.46) and 0.0016 (0.49), respectively. In contrast,
the line for IRECS+FlexE demonstrates that using a side-chain
ensemble may help to improve the docking performance on a
protein conformation generated using normal modes. The
corresponding slope and RSS are −0.0134 and 0.97,
respectively.

Partial improvements over the original best-pose rmsd and
successful dockings could be obtained with all docking
protocols, as can be seen in Table 1. In total, improvements

in best-pose rmsd were achieved for 46 of the 59 apo/holo.
AutoDock and FlexE both gave better results in 25 cases, FlexX
in 14 cases. Altogether, at least one docking pose with an rmsd
below 2.0 Å could be obtained for 26 of the 59 apo/holo pairs.
FlexE was most successful with 19 poses in total and had the
absolute minimum rmsd in comparison to the other docking
results in 15 of these cases (last column). For the AutoDock
protocol, these numbers were 8 and 7, respectively, for FlexX
they were 10 and 4, respectively.
Nevertheless, not all docking results could be improved. The

side-chain rotamers are backbone dependent, but even in the
100% reconstructed conformations, where the Cα trace is equal
to that of the original holo structure, the conformation of the
non-Cα backbone atoms can differ slightly from that of the
original structure since the elastic network only acts on the Cα
atoms and the remaining ones are approximately reconstructed
from these. Using normal modes obtained from a backbone
heavy-atom ENM instead yields the correct backbone
conformation for a 100% reconstruction; however, doing so
increases the set of resulting normal modes by a factor of 16,
which leads to the conclusion that the chance to achieve better
results in such a scenario is small, at best.
These results imply that the poor docking performance on

normal-mode generated protein conformations may be

Figure 7. Performances of the three docking protocols explicitly accounting for side-chain flexibility.

Table 1. Results for the Docking Protocols with Flexible
Side-Chains on the Fully Reconstructed Holo Structures

successes (best pose rmsd
<2.0 Å)

protocol improvements overall best in comparison

AutoDock, flex. side-chains 25 8 7 (27%)
Irecs + FlexE 25 19 15 (58%)
SCWRL + FlexX 14 10 4 (15%)

46 (78%) 26 (44%)

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci2004847 | J. Chem. Inf. Model. 2012, 52, 844−856852

http://pubs.acs.org/action/showImage?doi=10.1021/ci2004847&iName=master.img-007.jpg&w=299&h=230


improved when including side-chain flexibility. For docking
algorithms that do not model side-chain flexibility explicitly, it
may even be necessary to include not only one side-chain
rotamer but an ensemble thereof to effectively increase the
chances of a good docking result. However, this can greatly
increase the computational effort required for conformational
sampling, both for the generation of protein conformations and
the dockings to be performed. But even when including side-
chain flexibility, 70% of the modes were required, on average, to
obtain a pose with an rmsd below 3.0 Å. This shows that the
capability of normal modes to model binding pocket rearrange-
ments is strongly limited even when accounting for side-chain
conformations.

■ CONCLUSIONS
The aim of this study was to empirically gain insight into the
usability of binding-pocket normal modes obtained from Cα-
ENMs in protein−small molecule docking. We have established
a scenario that provides an upper bound for conformational
sampling algorithms: for known holo structures, we have
generated optimal reconstructions with respect to differently
sized normal mode subspaces retrieved from corresponding apo
structures.
The analysis of mode amplitude spectra and the subsequent

docking experiments have shown that the use of normal modes
in protein−small molecule docking is limited: the amplitude
vectors to be used differ greatly when reconstructing holo
structures for different ligands from the same apo structure.
This may not always be the case. If the conformation changes
globally upon ligand binding, an improvement in docking
accuracy can be achieved with a small set of modes, as shown in
the work of May et al.77 and Cavasotto et al.78 In this study,
Cavasotto et al. also introduced a measure of relevance to
determine the modes that are involved in binding pocket
conformational changes. This method makes is possible to
narrow down the sampling space to a small set of modes and
does not necessarily require the calculation of the effective
Hessian as done in our study. Ensembles generated from such
mode sets in this study have shown to improve docking results
for several ligands of cAPK Kinase ligands. This approach is
especially powerful if the mobility of a binding pocket is well-
defined and mostly independent of the ligand, as for example in
the conformational selection stage during protein movement.
However, in case of local ligand-specific induced fit movements,
if the binding pocket motions are unknown or cannot be well
captured by a small set of relevant modes, this method is
difficult to apply.
Even if the conformational change is not fully represented by

the most collective modes, the amplitude vectors for the
conformational change upon binding different ligands may
show a high degree of similarity. For example in the case of
calmodulin, a protein that changes its tertiary structure from an
elongated form to a globular conformation when binding a
ligand,92 the amplitude vectors are very similareven if the
ligands are highly diversedue to the dominating complexity
and the highly distinct conformations in the bound and
unbound state.76 However, in our study, the conformational
changes are less extensive and our results give rise to the
assumption that, in such cases, the ligand information is of great
importance when selecting the relevant modes, as most of the
modes are energetically almost equivalent and nearly equally
likely to be activated when binding a ligand.

But the problem how to include information on the ligand in
the selection procedure is unsolved: state-of-the-art scoring
functions are hardly accurate enough to even reliably select the
original pose from the set of generated solutions in the
redocking case. Hence, their general usability in helping to find
the relevant modes for the given ligand during a conformational
search is more than questionable. To our knowledge,
approaches to directly use the ligand as a predictor for the
relevant normal modes do not exist, and the question of
whether this is possible at all has not even been tackled.
Due to the mutual dependence of finding the correct ligand

conformation and determining the true protein conformation,
researchers are currently forced to apply conformational
sampling strategies. Our docking results show that sampling
with a fraction of only the first and most collective modes is not
sufficient to significantly improve the docking performance in
general, i.e. when no large-scale motions are involved in ligand
binding. Furthermore, although sampling with large fractions of
the normal mode space can improve the results, the
computational effort increases exponentially with the number
of modes and thus the docking may become infeasible.
The additional docking experiments accounting for flexible

side-chains show that it is often indispensable to adjust the side-
chain conformations upon backbone movement and that doing
so can enhance the docking performance when applied in
combination with normal modes. But while the docking results
could be improved using flexible side-chains, the number of
modes required for obtaining reasonable results was still too
large to be applicable in high-throughput settings.
Summarizing these observations, the general reduction in the

complexity of modeling protein flexibility with normal modes in
protein−ligand docking is small if relevant modes cannot be
determined from some external criterion, because even in our
best-case scenario, where the actual holo conformation and the
path from the apo conformation are known, the gain in docking
performance is small and will be hard to achieve in an actual
sampling scenario. Moreover, structural uncertainties in the
atom coordinates or the fact that normal modes are designed to
mainly detect collective motions of a system and thus have
problems to describe local changes involving single atoms can
cause the normal modes to fail in protein−ligand docking. This
leads to the strong assumption that the use of normal modes in
protein−small molecule docking may be restricted to select
cases where only few collective motions are responsible for
binding a ligand.
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