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Abstract

Background: DNA methylation (DNAme) is a vit@mponent of the epigenetic regulatory machinery and
aberratic@ccur in many diseases, such as cancer and diabetes. In light of recent demethylating therapeutic
agents, mapping and understanding DNAme profiles offers considerable promise for reversing the aberrant
states. There are several approaches to analyze DNAme, which vary widely in cost, resolution and coverage.
Affinity capture methods for DNAme (e.g. sequencing of methyl-binding domain captured regions, or methyl
binding domain (MBD)-s¢| rike a good balance between the high cost of whole genome bisulphite
sequencing (WGBS) and the low coverage of methylation arrays. However, existing statistical methods to
analyze these data are unable to differentiate between hypomethylation patterns and low capture efficiency, do
not offer flexibility to correct for copy number variation (CNV), do not produce practical precision estimates and
can suffer from long running times.

Results: We propose an empirical Bayes framework that uses a fully methylated (i.e. Sssl treated) control

sample to transform observed read densities into regional methylation estimates. In our model, inefficient
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capture can readily be distinguished from low methylation levels, by means of larger posterior variances.
Furthermore, we can integrate CNV by introducing an multiplicative offset into our Poisson model framework.
Notably, our model offers analytic expressions for the mean and variance of the methylation level and thus is
fast to compute. Our algorithm performs better in terms of bias, mean-squared error and coverage probabilities
compared to existing approaches when applied to an human lung fibroblast (IMR-90) MBD-seq test dataset,
where “true” methylation levels are available from WGBS. Directly integrating CNV improves estimation
performance in a prostate cancer cell MBD-seq dataset.

Conclusions: Our model not only improves on existing methods, but flexibly allows explicit modeling of CNV,
allows context-specific prior information and affords a computationally-efficient analytic estimator. Our method
can be applied to methylated DNA affinity enrichment assays (e.g MBD-seq, MeDIP-seq) and a software

implementation will be freely available in the Bioconductor Repitools package.

Background

DNA methylation (DNAme) is @al component in the regulation of gene expression, is precisely
controlled in development and is known to be aberrant in many diseases, such as cancer and diabetes [1].
In differentiated cells, DNAme occurs primarily in the CpG dinucleotide context. For
CpG-island-associated promoters, increases in DNAme (i.e. hypermethylation) induce repression of
transcription, while hypomethylated promoters are generally transcriptionally active. In cancer, tumor
suppressor gene promoters are frequently hypermethylated, and therefore silenced, while hypomethylation
can activate oncogenes, which collectively can drive disease progression [2,3]. The detection and profiling
of such abnormalities across cell types and patient cohorts is of great medical relevance, to both our basic
understanding and translation to the clinic. Epigenetic patterns can be used as diagnostic markers,
predictors of response to chemotherapy and for understanding mechanisms of disease progression [4-7].
Acquired epigenetic changes are potentially reversible, which provides important therapeutic opportunities;
in fact, the US Food and Drug Administration has approved at least four epigenetic drugs while others are
in late-stage clinical trials [6].

There are four classes of methods to profile DNAme genome-wide: chemical conversion, endonuclease
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digestion, direct sequencing and affinity enrichment; combinations of techniques are also in use (e.g.
reduced representation bisulphite sequencing (RRBS) [8]). For recent reviews of the available platforms,
see [9-11]. Treatment of DNA with sodium bisulphite (BS) is the gold standard, giving a single-base
readout that preserves methylated cytosines while unmethylated cytosines are converted to ura@l" his
approach ca@ coupled with high-throughput sequencing, e.g. whole genome bisulphite

sequencing (WGBS), or a “genotyping” microarray (e.g. Illumina Human Methylation 450k array [12]).
Because WGBS is genome-wide, it inefficiently reveals methylation status for low CpG-density regions [13]
and is cost-limiting for larger cohorts; however, a tradeoff can be made between coverage and

replication [14]. Meanwhile, Illumina arrays cover less than 2% of genomic CpG sites and enzymatic
digestion approaches are limited by the location of specific sequences. Of course, there is considerable
excitement surrounding third generation sequencing technologies that directly infer methylation status, but
these are not yet readily available and generally offer lower throughput [15,16].

An attractive alternative that seems to give a good tradeoff between cost and coverage, albeit at lower

resolution, is affinity capture of ﬁvlated DNA, in the combination with high-throughput sequencing

(e.g. MeDIP-seq [4,17]). Using a tibody to 5-methylcytosine or a column affixed with methyl binding
domain (MBD) proteins, subpopulations of methylated DNA can be captured (see Laird et al. [9]).
Libraries of these fragments can be prepared, sequenced and mapped to a reference genome; with
appropriate normalization, the density of mapped reads can be transformed to a quantitative readout of
the regional methylation level. However, the capability of these procedures to interrogate a given genomic
region is largely related to CpG-density, which influences the efficiency of capture and can differ from
protocol to protocol [13]. Thus, statistical approaches are needed.

Several methods have been proposed to estimate DNAme from affinity-based DNAme data. MBD-isolated
Genome Sequencing, a variant of MBD-seq, assumed a constant rate of reads genome-wide and used a
single read density threshold to binarize as methylated or not [18]. State-of-the-art methods, such as
Batman [17] and MEDIPS [19], build a linear model relating read density and CpG-density, which is then
used to normalize the observed read densities. For MeDIP-seq data, both algorithms showed similar
estimation performance [19], while MEDIPS is considerably more time-efficient. Recently, a tool called
BALM used deep sequencing of MBD-captured populations and a bi-asymmetric-Laplace model. All
methods, however, suffer from the same limitations: i) low capture efficiency cannot easily be distinguished
from low methylation level; ii) other factors that directly affect read density, such as copy number

variation (CNV), are not easily taken into account. For CNV correction, a few possibilities have emerged:
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i) omit known regions of amplifications [4]; ii) adjust read densities manually by dividing by estimated copy
number before running Batman [20]; or, iii) adjust using read density from an input sample [21].

We present a novel empirical Bayes model called BayMeth, based on the Poisson distribution, that
explicitly models read densities of a fully methylated (e.g. SssI-treated DNA) control sample together
those from a sample of interest. The model provides an understanding of where the assay can detect
DNAme and allows direct integration of CNV and potentially other factors that affect read density.
Notably, we derive an analytic expression for the mean methylation level and also for the variance.
Credible intervals can be computed using numerical integration of the analytical posterior marginal
distributions. Using MBD-seq on human lung fibroblast (IMR-90) DNA, where “true” methylation levels
are available from WGBS, we show favorable performance against existing approaches in terms of bias,
mean-squared error, Spearman correlation and coverage probabilities. In a second application to MBD-seq
data on human prostate carcinoma (LNCaP) cells, we show that directly integrating CNV data provides

additional performance gains.

Results
Statistical Model: BayMeth

DNAme data is obtained by MBD-seq or a similar assay. Let y;; and y;o denote the observed number of
(uniquely) mapped reads for genomic regions i = 1,...,n for the sample of interest and the Sssl control,
respectively. Throughout this paper we use non-overlapping regions of 100bp, whereby only regions with at

least 75% mappability and a CpG-density larger than zero are considered (see Methods). Let
Yi1| i, A ~ Poisson (f x iy i X )\i) ,and  yio|A; ~ Poisson(};), with A\; >0,0<pu; <1. (1)
cen

Here, \; denotes the region-specific read density at full methylation, u; the regional methylation level and
f > 0 represents the (effective) relative sequencing depth between libraries (i.e. a normalization offset).

Recently, an approximately linear relationship between the copy number state and the read density was

shown [22]. In these situations, we can include an additional multiplicative offset £ into our model

C

formulation, where cn; denotes the copy number state at region i and ccn is cell’s most prominent CNV

state (e.g. two in normal cells).

Closed-form posterior methylation quantities
In a Bayesian framework, prior distributions are assigned to all parameters. For the methylation level (p;),

we assume a uniform prior (i.e. a beta distribution with both parameters set to 1). Alternative prior



specifications, such as a mixture of beta distributions, are possible (see Discussion). For the region-specific
density, we assume a gamma distribution, i.e. A; ~ Ga(a, 8) using shape « > 0 and rate 8 > 0
hyperparameters, which are determined in a CpG-dependent manner (see next Section). To make

inferences for the regional methylation levels, u;, we integrate out A; from the joint posterior distribution:

p(wilyin, viz) Z/ P(Ni, 1 |yin, yiz) A
0

_ /OO P(yi1| i, i) p(yio| Ai) p(Ni) p(1s)
0
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Notably, p(yi1, yi2) can be calculated analytically [23], so that the marginal posterior distribution

4 (i By
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where o Fy () is the Gauss hypergeometric function [24, page 558]. The posterior mean and the variance are
analytically available (see Methods) and therefore straightforward to efficiently compute; credible intervals
can be computed numerically from Equation (2). Estimates for bins with a CpG-density of zero are

removed.

Empirical Bayes for prior hyperparameter specification

Our method takes advantage of the relationship between CpG-density and read depth to formulate a
CpG-density-dependent prior distribution for \;. Taking CpG-density into account the prior should
stabilize the methylation estimation procedure for low counts and in the presence of sampling variability
(i.e. sampling a large population of DNA fragments). The hyperparameters a and 8 of the gamma prior
distribution are determined in a CpG-density-dependent manner using empirical Bayes. For each 100bp
bin, we determined the weighted number of CpG dinucleotides within a window of 700bp (see Methods).
Each region is classified based on its CpG-density into one of K = 100 non-overlapping CpG-density
intervals (See x-axis tick marks in Supplementary Figure 1). Due to the small number of regions with
extreme CpG-densities, the last interval width is larger.

For each class separately, we derive the values for o and 8 under an empirical Bayes framework using
maximum likelihood. Note that both read depths, from the Sssl control and the sample of interest, are

thereby taken into account, since A; is a joint parameter affecting both. We end up with K parameter sets



for shape a and rate 5. Considering only the Poisson model for the Sssl control above, we can derive the
prior predictive distribution by integrating A; out, resulting in a negative binomial distribution, as
illustrated in Figure 1. Here, we show the Sssl read densities by CpG-density, together with the predictive

distribution evaluated at the center of the CpG-density classes.

BayMeth improves estimation and provides realistic variability estimates

To take advantage of Lister et al. [25] single-base-resolution high-coverage methylome obtained by WGBS,
we generated MBD-seq data using IMR-90 cells (see Methods), with affinity capture experiments run under
the same conditions that we collected previously [2@7\@ applied our proposed model to IMR-90 and SssI
MBD-seq data. The normalizing offset f = 0.596 is found based on calculating a scaling factor between
highly methylated regions in IMR-90 relative to the Sssl control (see Methods and Supplementary Figure
2). The prior parameters for the gamma distributions are determined by empirical Bayes for bins with at
least 75% mappability, as discussed above (see Methods). We compared the results to those obtained by
Batman [17] and MEDIPS [19]; BALM was tried (see Supplementary Figure XX) but not considered
further due to poor performance. To provide plausible uncertainty estimates of the Bayesian approach
Batman, we increased the default number of generated samples from 100 to 500; we only considered
chromosome 7 since Batman is very computationally demanding. The WGBS data, here considered to be
the “truth”, are collapsed into 100bp bin estimates (see Methods) to match the estimates from MEDIPS,
Batman and our approach. In total, chromosome 7 is comprised of 1588214 100bp bins: 814358 are
excluded for lack of WGBS data, further 20510 bins are excluded due to no Batman estimates and then
194303 are excluded for low mappability; in total, algorithm comparisons are conducted on the remanding
559043 bins.

The behavior of BayMeth and Batman is illustrated using an example region of chromosome 7 (see
Figure 2A). WGBS levels, CpG-density and read counts per 100bp region of MBD-seq SssI and IMR-90
sample are shown. As expected, the number of reads in the Sssl control is related to the CpG-density,
whereas the read density in (MBD-seq) IMR-90 is modulated by both the region-specific density and the
DNAme level. Regions lacking both IMR-90 and Sssl reads suggest inefficient MBD-based affinity capture
(e.g. region ‘a’). Figure 2B shows posterior samples from Batman and inferred posterior distributions from
BayMeth. For region ‘a’, Batman’s posterior samples are concentrated between 0.7 and 1 (mean equal to
0.85). In contrast, BayMeth returns a mean methylation level of 0.49 together with a large 95% highest

posterior density (HPD) interval (0,0.94), reflecting the uncertainty from having no SssI reads sampled.

in process
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For regions with no IMR-90 reads but efficient capture (e.g. region ‘b’), both BayMeth and Batman
provide sensible posterior marginal distributions and low DNAme estimates. If there are a small number of
reads for IMR-90 with efficient capture (e.g. region ‘c’) the BayMeth posterior marginal is more disperse
than Batman’s, while both are close to zero. Region ‘d’ has a high number of reads for both samples and a
true methylation level around 0.95. This level is covered by the 95% HPD region of BayMeth, while it lies
outside of the density mass obtained by Batman overestimating this region.
Table 1 summarizes the estimation performance for chromosome 7 by means of mean bias (mean of
differences between the posterior mean f; and the true value p;), MSE (mean of squared differences),
Spearman correlation and mean Dawid-Sebastiani score (DSS):

DSS = 1213 <(“_“)2 + 210g(a-)>

I i=1 of v

where [1; and o; are the posterior mean and standard deviation, respectively, and p; is the WGBS
methylation level. The DSS is a scoring rule that assesses both calibration and sharpness [27]. To account
for uncertainty present in the WGBS estimates, we applied a threshold on the depth; we assess the
performance using bins with at least 33 WGBS reads (unmethylated and methylated) corresponding to the
25% quantile of depth in the truth, which results in 414352 bins. Results are stratified into five groups
according to depth in the Sssl control, which should represent a surrogate of the capture efficiency. The
first group [0,4] encompasses primarily low-CpG regions that are not well captured in MBD experiments,
while the high (27, 168] group represents primarily CpG island regions. On average, Batman tends to
overestimate DNAme while MEDIPS tends to strongly underestimate. BayMeth, in contrast, is almost
unbiased. The smaller bias in the point estimates obtained by BayMeth is also reflected in the MSE. For
all methods, the MSE decreases with higher SssI depth, as expected due to the efficiency of capture. For all
depth groups, BayMeth has the highest correlation with the WGBS estimates, which increases with higher
SssI depth. Methylation estimates of the highest SssI depth group, namely (27, 168], plotted for all
methods against the “true” WGBS methylation levels are shown in Figure 3. Although the estimates of all
methods are off the diagonal, BayMeth provides the most accurate point estimates. The overestimation of
Batman and underestimation of MEDIPS is obvious, while the BayMeth errors vary almost symmetrically.
Since MEDIPS does not provide uncertainty measures, no DSS scores are given in Table 1. DSS estimates
are much higher for Batman than for BayMeth, which is a reflection of underestimated standard deviations
by Batman (see Figure 2 B). In contrast, BayMeth tends to provide appropriate posterior standard

deviations, which can result in negative DSS values.



To assess calibration, we computed coverage probabilities (frequency that the true value is captured within
a credible interval). Stratified by the “true” WGBS methylation level, Figure 4 shows coverage
probabilities at 80% and 95% level for regions deemed to be inside or outside a CpG island (Supplementary
Figure 1). HPD intervals and quantile-based credible intervals (CI) are computed for BayMeth while only
quantile-based Cls are available for Batman; coverage probabilities are not possible from MEDIPS output.
As mentioned above, Batman has a tendency to underestimate the variance and results in lower coverage
probabilities of the WGBS values; in contrast, BayMeth’s coverage probabilities are much closer to the

nominal levels and seem to be stable across the stratification.

CNV-aware BayMeth improves DNAme estimation for prostate cancer cells

In the following, we illustrate the benefits of directly integrating CNV information into a cancer MBD-seq
dataset. We apply our methodology to the autosomes of the LNCaP cell line. To motivate such an
adjustment, Figure 5 shows the estimated copy number across chromosome 13 (using the PICNIC
algorithm on Affymetrix genotyping arrays; see Methods), together with tiled MBD-seq read counts.
Although read densities at a specific genomic region (again, 100bp non-overlapping bins) are influenced by
a combination of effects (e.g. DNAme, CpG-density), a relationship between CNV and number of reads is

clearly visible. In particular, a difference in read counts between regions with four copies and those with

smaller copy numbers is apparent. We adjust for this bias through a multiplicative offset £, where the
prominent state is four copies (i.e. ccn = 4 in Equation (1)), as shown in Supplementary Figure 3. In
addition, regions from this state (cn; = 4) are used to determine the normalizing offset f (here, estimated
to be 0.712). The read depth stratified by copy number state together with mean and median estimates is
shown in Supplementary Figure 4. In particular, for the three most frequent CNV states (2-4), read
densities scale approximately linearly (with a slope of 1) with CNV, which justifies the structure of our
multiplicative offset; copy-number offsets are shown in Table 2. Figure 6 shows the bias of DNAme point
estimates of the different methods by integer CNV state (2-5); here, we used the Illumina
HumanMethylation 450k array as the “true” methylation (see Methods), since methylation status should
be unaffected by CNV [28]. Because CNV only affects MBD capture for methylated regions, we restrict
this comparison to where the true methylation state is larger than 0.5 and we applied a threshold of 13
(median after excluding bins with a low depth of [0,4]) to the number of reads in the SssI-control to select

for regions where MBD-seq has good performance. Similar to the IMR-90 data, MEDIPS tends to

underestimate, while Batman tends to overestimate. Using the standard normalization offset, BayMeth



provides biased estimates, predictably by CNV state. After including the copy-number-specific offset, these
biases almost disappear. A scatterplot illustrating the benefits of including the copy-number-specific offset
is shown in Figure 7 for copy number state two. In particular, bins that have been falsely underestimated
(due to two copies instead of four) are corrected. Table 3 shows mean bias, MSE and Spearman correlation
for the different approaches stratified by copy number state. In all measures, the adjusted version of
BayMeth performs best. While the differences in the correlation estimates are small, clear advantages can
be seen in terms of bias and MSE. In contrast to the other approaches, the performance estimates stay

almost constant over the different copy number states and are close to zero.

Discussions and conclusions

DNA methylation plays a crucial role in various biological processes and is known to be aberrant in several
human diseases, such as cancer. There are now a multitude of methylation profiling platforms, each with
inherent advantages and disadvantages. Bisulfite-based approaches are considered the gold standard since
they allow quantification at single-base resolution. However, applied genome-wide, this technique can be
inefficient and expensive, in terms of CpGs covered per read or base sequenced [13]. On the other hand,
affinity capture based approaches, such as MBD or MeDIP, combined with sequencing seem to provide a
good compromise between cost and coverage, albeit at lower resolution; thus, we consider them to be an
attractive alternative. Recently, affinity capture has been demonstrated using only hundreds of
nanogramms of starting DNA, thus making these approaches applicable to a wider range of studies [29].
The key to our proposed method is the use of methylated DNA captured from a fully methylated Sssl
control; for future studies, we recommend such a sample should be collected under the same conditions
used for the samples of interest. We used commercially available Sssl-treated DNA [@r the MBD-seq
experiments and verified with the 450k platform that the overwhelming majority of CpG sites are indeed
methylated (see Supplementary Figure 5); similarly, such a sample can be constructed directly and
inexpensively [30]. Our proposed method, BayMeth, is a flexible empirical Bayes approach that transforms
read densities into regional methylation estimates. Our model is based on a Poisson distribution and takes
advantage of SssI control data in two ways: i) we model SssI data jointly with data from a sample of
interest to preserve the linearity of the methylation estimation; ii) we explicitly get information about the
region-specific read density as a function of CpG-density. Our method is similar in principle to MEDME,
which was applied to fully methylated MeDIP microarray intensities [31]. However, our approach

necessarily modifies assumptions for count data (i.e. read densities versus probe intensities) and is
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effectively a moderation between the global fit that MEDME implements and a region-specific correction.
We showed that BayMeth delivers improved performance against state-of-the-art techniques using IMR90
MBD-seq data, using two datasets where “true” methylation levels are available from WGBS or
bisulphite-based methylation arrays. In general, MEDIPS grossly underestimates the methylation levels
and does not offer variability estimates. Batman performs reasonably well, but our analyses suggest that
variability estimates are generally underestimated. Our model performs best in point estimation and
affords reasonably interval estimates. Notably, BayMeth offers analytic expressions for the posterior
marginal distribution and the posterior mean and variance, avoiding computationally-expensive sampling
algorithms (e.g. Batman). Furthermore, we can explicitly integrate existing CNV data, which offers
improvement when applied to cancer datasets. CNV adjustments may be possible with existing approaches
Batman or MEDIPS, based on ad-hoc transformations of the read counts (e.g. see [20]), but are not
included within the model formulation. In contrast, our model preserves the count nature of the data.

A conceptual similar Bayesian hierarchical model, which involves MCMC sampling, has been proposed in
the context of Methyl-Seq experiments, where methylation levels are derived based on enzymatic digestion
using two enzymes [32]; a separate Poisson model is assumed for the tag counts of each enzyme. The
models are linked through a shared parameter while one Poisson model contains a methylation level
parameter pu, assumed to be uniformly distributed a priori. In the two applications presented here, we also
used a uniform prior for the methylation level. Of note, the analytical expressions for the mean, variance
and posterior marginal distribution are still available using a prior based on a mixture of beta distributions
(see Methods). Thus context-specific information, for example CpG-density or the position relative to
transcriptional features, can be incorporated in the prior distribution for the methylation level. We have
tried various weighted mixtures of two or three beta distributions that build in contextual information;
however, these did not outperform the uniform prior.

To adjust the modeled mean for effects arising due to different library compositions in the Sssl control and
the sample of interest, we estimated a normalization offset. Furthermore, adjustments for CNV are
included by a second multiplicative offset. In fact, this approach of using offsets to adjust the expected
read density is quite general and could be extended beyond composition and CNV (e.g. see [22,33]).

It is well known that methylation levels are dependent within neighboring regions. Thus, a potential
improvement may involve modeling correlation between neighboring genomic bins. One approach might be
Gaussian Markov random fields [34]; however, the analytical summaries are lost, so the the gain in

performance may not justify the more complex model and associated computation cost.

10



1 Methods
1.1 MBD-seq on IMR-90, LNCaP and Sssl DNA

We used LNCaP and SssI MBD-seq data and Affymetrix genotyping array data (LNCaP only) from
Robinson et al. [26] and can be found at http://www.ncbi.nlm.nih.gov/geo under accession number
GSE24546. Similarly, IMR-90 MBD-seq is available from GSE38679. Details of the DNA capture,

preparation and sequencing can be found in Robinson et al. [@

Calculation of CpG-density
CpG-density is defined to be a weighted count of CpG sites in a predefined region. We used the function
cpgDensityCalc provided by the R-package Repitools [35] to get 100bp bin-specific CpG-density estimates

using a linear weighting function and a window size of 700bp (since we expect fragments around 300bp).

Calculation of mappability

Using Bowtie, all possible 36bp reads of the genome were mapped back against the hgl8 reference, with no
mismatches. At each base, a read can either unambiguously map or not. A mappability estimate gives the
proportion of reads that can be mapped to a specific regions. To get bin-specific mappability estimates we
used the function mappabilityCalc in the Repitools package [35]. In our analysis, a window of 500bp was
used (250bp upstream and downstream from the center from each 100bp bin) and the percentage of

mappable bases was computed.

Derivation of region-specific methylation estimates from WGBS

In the Lister et al. IMR-90 WGBS data, the number of reads r;-' and r; overlaying a cytosine j in the
positive (+) and negative strand (—), respectively, is available. Furthermore, the number of these reads,
m;-' and m; , that contain a methylated cytosine, is known. A single-base methylation estimate can be
obtained by (mj +m; )/ (7";' + rj+) To get a bin-specific methylation estimate all cytosines lying within a
bin of interest B are taken into account:

ZjeB(m;r +my)
ZjeB(TJJ‘r +75)

uB =

Here, Zjeg(rj +7;7) is termed depth.

11
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Derivation of region-specific methylation estimates from 450K arrays

First, the Illumina HumanMethylation450 methylation array was preprocessed using default parameter of
the minfi package [36]; for each sample, a vector of beta values, one for each targeted CpG site
representing methylation estimates are produced. To obtain (100bp) bin-specific methylation profiles, we
averaged beta values from all CpG sites within 100bp (upstream and downstream; total window of 200bp)

from the center of our 100bp bins.

Determining the normalizing offset

The composition of a library influences the resulting read densities [37]. For example, the SssI control
represents a more diverse set of DNA fragments since it captures the vast majority of CpG rich regions in
the genome. Therefore, if the total sequencing depth were to be fixed, one would expect a relative
undersampling of regions in Sssl, compared to a sample of interest that is presumably largely
unmethylated. To adjust the modeled mean (in the Poisson model) for these composition effects, we
estimate a normalizing factor f that accounts simultaneously for overall sequencing depth and
composition. Supplementary Figure 2 shows an M (log-ratio) versus A (average-log-count) plot at
1,000,000 randomly chosen (100bp) bins for IMR-90 compared to the fully methylated control. A clear
offset from zero is visible, where the distribution of M values is skewed in the negative direction. The
normalization offset f is estimated as f = 27¢%n(Ma>q) with ¢ corresponding to a high (here, 0.998; more
than 35000 points in both applications) quantile of A. In cancer samples where CNV are common, the
normalization factor f is calculated from bins that originate from the most prominent copy number state

(e.g., ccn =4 in LNCaP cells).

Estimation of copy number
Copy number estimates were estimated from Affymetrix SNP6.0 genotyping array data by PICNIC [38],
using default parameters. PICNIC is an algorithm based on a hidden Markov model to produce absolute

allelic copy number segmentation.

12



Empirical Bayes for prior specification

For ease of readability let £ = f x Z=t. The joint marginal distribution of y;1, ¥ results as:
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Let p; ~ Be(a,b), i.e. p(u;) = % pe 1 — )b, a,b > 0. (For a uniform distribution a = b = 1).
Then

dpu;

D(yis + o + @) Dla+0b) o (b g T (1 — )b !
P(Yi1, Yiz) = (ir + yiz ) I( )E'lllﬂ / (Nz (1 — i)
0

T(a)yilyiz!  T(a)T'(b) Eu; + 1+ p)yatyita

I'(yi1 + yiz + @) T'(a + b) it B /1 (1 — t;)vinta 1tlf ! it
L(a)yirlyiz!  T(a)T(b) (B + 1+ E)virtviate J, (1 __ B .)yﬂﬂiﬁa ' (3)
E+1+5
Ty + yie + @) < B )”‘ ( E )y“ ( 1 )y” I'(a+b)I'(yin + a) y
T T(@yialyie! \B+1+E B+1+E B+1+FE) T(a)T(yi1 +a+b)

[+

FE
F; i1+ Yie + o, by +a+ b ——— | .
21<y1 Yi2 Yi1 5+1+E)

In the step marked with * we substituted (1 — ;) with ¢;, where dt; = —dpu;, to get the desired form of the
Gauss hypergeometric function (the limits of the integral stay thereby unchanged), which is defined by:

I'(c)

QFl(a, b, C;Z) = m

1
/ 1 =) Y1 —2t) 7%t ¢>b>0
0

where |z| < 1 is the radius of convergence [24, see page 558]. (Note, |z] = |[E/(B+ 1+ F)| <1 in (3), so
that convergence is granted). Model (3) is similar to the beta binomial (BB)/negative binomial (NB)
model derived in [39] and [23].

Using a mixture of M beta distributions as prior distribution for p;, i.e. p; ~ Zﬁle Wy, Be(am, b ), where

0<w, <l forallm=1,...,M, andzn]\lewmzlweget:

_T(ya +yie +a) p : E " L "
P(yi1, yiz) = T(@)yiyio! <ﬂ+1+E> (6+1+E> <5+1+E) < W
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with

M
F(am + bm)F(yil + am)
w z:: W, * F(

E
x oF! i1+ Yi +O[,b yYi + am +bm; a1
am)r(yzl + Am + bm) 2 (y ! viz mi il )

f+1+E

m=1
Under the empirical Bayes approach, the parameters of (4) can be estimated using maximum likelihood.
The parameters are thereby determined in a CpG-density-dependent manner. Each 100bp bin is classified
based on its CpG-density into one of K = 100 non-overlapping CpG-density classes: C1,...,Cxk. The class
size |Ck|, i.e. the number of 100bp bins in class k, is denoted by ny. We derive for each class separately the
set of prior parameters using empirical Bayes leading finally to K parameter sets. The corresponding log

likelihood function for class k is given by

ng
. k k
l(w(k)7a(k)7b(k)7a(k)’ﬁ(k)|ygk),y£ )) _ Z1og(p(yj(.’f),y](-z)\w(k),a(k),b(k),a(k),ﬁ(k))- (5)
j=1
Here ygk) = (yﬁ), e 7y,(i)l) and yék) =( 5’;% . ,yﬁl’&) denote the read counts of the bins contained in class

Ci.. Further w(*) = (w%k), ... ,wj(\’;)), alk) = (agk), . ,a%j)), bk = (bgk), ... ,bgvl?), a® . 8*) denote the
parameters for CpG density class k. (Using a uniform prior for the methylation level p; only parameters
a®) and B*) are left). In Equation (5), we assume that genomic regions are independent. For a discussion

of this assumption, see the Discussion Section.

Derivation of the posterior marginal distribution for the methylation level.

Our main interest lies in the marginal posterior distribution of the methylation level p;

p(pilyin, Yiz) :/ PNy il Yit, Yiz)dAq,
0

where
D(Wats Yaz | Ny phs)P( iy s
p()\iaﬂi|yilayi2) = ( l K ) ( )
P(yihyiz)
cond.indep (Vi1 Nis 1) (a2 | Ai) (N )p(1t4)
P(yﬂ,yiz)
_ At exp(— (B 4 1+ B)X) (B + 1+ E)* vt p(p,)
T(yn +yiz +a) x W
Thus:
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Yi1

M.
P(M|yi1,yi2) = —

p(Mz‘)(ﬂ + 1+ E)@+yi1+y1:2

T(yi1 + yia + ) x W /O AyHvEteTl exp(—(Bpi + 1+ B)Ag)dA;
Yi1

= M (1 M) —(a4yi1+yiz)

W CB+1+E
The mean of the marginal posterior of p; is given by:

E(pilyir, yiz) =

=[5

M
A=Y |wn- D(am + bm)L(yi1 + am+1)
m=—1 F(a7l)F(yi1 + am + bm"'l)

FE
X oF1 | yi1 + Yi2 + 0, b Yir + G + b+l ————
2 1(91 Yi2 Yi1 ﬂ+1+E>

1
E(Mz‘|y¢17y12):/ Mip(ui\yil,ym)dui
0

D(am +bm m+Yi1 _
7i§: /1wmr<fmr<bn3w? L )t
W = Yo (1 _ E<1w>)“+y”+yw Hils

B+1+E
where each integral can again be written in terms of the Gauss hypergeometric function:

I'(am+bm am+Yi _
/ Vo ey (1 )
0

dpi
(1 sy
B+1+E
o me(arn + bm) /1 (1 — ti)am+yi1t?m_1 "
N I‘(am)l"(bm) 0 1 B, atyiit+yiz b
( T BHI+E z)
Wi (am + bm) L(bm)T (yir + am + 1 E
= F(a( o) ) F((y»1)+(a 1 i 1)) oy (yil + Yi2 + a, by Yi1 + G + by + 15 B—|—1—|—E)
- Fy {ya +yie +a, by + Gy + by + 15— )
F<a’m>F(yzl+am+bm+1) 271 | YiL Yiz Yi1 ﬂ+1+E

O
The variance of the marginal posterior distribution of u; can be computed using the computational formula

fOI‘ the variance Var(ui|yi1,yi2) = E(,U,22|y11,y12) — (E(,Ufi|yi17yi2))27 Where

B
E(u2|yin, viz) = W
with

B i o . [(am + bm)T(yi1 + an+2)
= m F(am)F(yu + am + bm+2)

x oI (yn + iz + a, by Yit + G + by +2;

F17E)
B+1+FE

B AN?
Var(ﬂi|yi1ayi2) == — ()

w
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Details on Batman specifications

Batman is an algorithm implemented in JAVA and run from the command prompt. The original Batman
can be downloaded from http://td-blade.gurdon.cam.ac.uk/software/batman/; we used an unreleased
version “20090617” from Thomas Down; the commands used to run Batman are given in the

Supplementary Material.

Details on MEDIPS specifications

We used the R-Bioconductor MEDIPS version 1.4.0 and followed the available tutorial
(medips.molgen.mpg.de/MEDIPS.1.0.0/MEDIPS.pdf from October 18, 2010); the detailed command
sequence is given in the Supplementary Material. MEDIPS returns methylation estimates in the range

from zero to 1000, which we rescaled to the interval [0, 1]. In our comparison, we used the absolute

methylation score (AMS) provided by MEDIPS.
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Figures
Figure 1 - Sssl read depth versus CpG-density together with prior predictive distribution

—— Mean
80 N ---- 2.5% and 97.5% quantile
. 150000 samples (of 23054096 )

60 ! ‘.-

Sssl

CpG density

Mean, 2.5% and 97.5%-quantile of the prior predictive distribution of the SssI control data together with
the read depth of 150000 randomly chosen 100bp regions. The parameters of this negative binomial
distribution are derived using an empirical Bayes approach by maximizing the joint marginal distribution
of the IMR-90 and SssI control counts stratified into 100 CpG-density groups. Only counts from bins with

a mappability larger than 0.75 were considered.

Figure 2 - Example data tracks for IMR-90 chromosome 7
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Panel A: Shown are the WGBS methylome (black) per CpG-site as obtained by Lister and others [25].
CpG-density (light blue), and read counts for SssI-treated DNA (purple) and IMR-90 cells (green)
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obtained by MBD-seq based on 100bp non-overlapping bins are shown. Methylation estimates for BayMeth
(red) and Batman (orange) are provided. Panel B: For 4 specific bins of panel A (denoted a, b, ¢, d)
detailed posterior information of BayMeth and Batman is provided. For BayMeth posterior marginals
together with 95% HPD regions (grey-shaded) are shown. For Batman the posterior samples are plotted as
histograms. For both approaches the posterior mean is indicated (red dashed line) together with the “true”

WGBS derived methylation estimate (blue dashed line).

Figure 3 - Regional methylation estimates for IMR-90 chromosome 7
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Regional DNAme estimates of MEDIPS, Batman and BayMeth, respectively, plotted against WGBS
methylation levels for the 75% of bins with the largest depth in the truth (cutoff are 33 reads) where the

depth in the SssI control is (27, 168].

Figure 4 - Coverage probabilities stratified by CpG island status and true methylation level
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Coverage probabilities (frequency in which the true value is within a predefined credible interval) at 80%
and 95% level are shown for the 75% of bins with the largest depth in the truth (cutoff are 33 reads).
HPD intervals (light red) and intervals based on quantiles (red) are used for BayMeth. For Batman only
quantile-based intervals (orange) are available, while MEDIPS does not return any uncertainty estimates.
The nominal coverage value is indicated (black dashed line) as a reference. Genomic regions are stratified
by CpG-density using the threshold of 12.29 which separates CpG islands from non-CpG islands, compare
Supplementary Figure 1. Further stratification by the true methylation level as derived from WGBS [25] is

provided.

Figure 5 - Relation between copy number state and regional affinity enrichment

4.0 H EE——
3.5
3.0 4 L L] o o
2.5
2.0 L
1.5
1.0 - : : . ITTTTITTITIIITTITIIOIT, '

T
20 40 60 80 100
Position (MB)

Absolute copy number

# Reads

20 40 60 80 100
Position (MB)

Top: Copy number estimates of LNCaP cell line obtained by the PICNIC [38] algorithm for 100bp bins
across human chromosome 13 with a mappability of at least 75%. Bottom: Read counts of affinity capture

sequencing data for the same bins.
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Figure 6 - Bias of LNCaP methylation estimates compared to 450k array beta values
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Boxplot of bias (Estimated methylation level - 450K array beta value) for MEDIPS (yellow), Batman
(orange), unadjusted BayMeth (light red) and adjusted BayMeth (red) stratified by the most prominent
copy number. (Outliers are not shown.) The results are shown genome-wide for 100bp bins with at least
75% mappability and where the true methylation estimate is larger than 0.5. A threshold of 13 is applied

for the depth of Sssl. The blue dashed line indicates a bias of zero.

Figure 7 - Effect of adjusting for CNV in LNCaP cell line
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Methylation estimates for copy number state two derived by BayMeth compared to 450k array beta values.
A threshold of 13 is applied for the depth of SssI, which leads to 61696 100bp-bins. Left: Without
adjustments for CNV. Right: With adjustment for CNV.
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Tables

1.2 Table 1 - Performance assessment for IMR-90 analysis (chromosome 7)
Results are shown for bins with a truth depth larger than the 25% quantile (cutoff are 33 reads), stratified
into five groups by Sssl depth. Shown are the number of bins per group, mean bias, MSE, Spearman

correlation, DSS and coverage probabilities at 80% and 95% level.

80%-coverage 95%-coverage

Sssl depth ~ #Bins  Method Bias MSE  Cor DSS quantile (HPD) quantile (HPD)
0,4] 305638 BayMeth -0.04 0.08 0.36 153 0.70 (0.72) 0.89 (0.89)
Batman  0.22 0.14 0.31 325.42 0.30 0.43

MEDIPS -0.38 0.26 0.29 — — —

(4,7 22196 BayMeth 0.05 005 0.65 1.98 0.75 (0.72) 0.83 (0.89)
Batman 0.16 0.07 0.61 3726.37 0.23 0.34

MEDIPS -0.23 0.11 0.45 — — —

(7.14] 28871 BayMoth 0.06 0.04 0.69 1.97 0.73 (0.70) 0.86 (0.86)
Batman 0.16 0.07 0.65 5721.26 0.19 0.28

MEDIPS -0.21 0.10 0.49 — — —

(14,27] 28928 BayMeth  0.05  0.03 0.76 228 0.70 (0.70) 0.83 (0.86)
Batman 0.15 0.06 0.73 2158.72 0.15 0.23

MEDIPS -0.20 0.09 0.59 — — —

(27,168] 28719 BayMeth 0.02 0.03 0.78 -2.56 0.64 (0.72) 0.78 (0.86)

Batman 0.11  0.05 0.75 13558.87 0.13 0.20
MEDIPS -0.22 0.10 0.67 — —

1.3 Table 2 - Copy number specific offset
Copy number specific offsets defined as f x 7t derived for 100bp non-overlapping bins of LNCaP
autosomes, which have a mappability of at least 75%. Note, that f is only derived based on bins with the

most common copy number state four.

Copy number 1 2 3 4 5 6 7 8
Combined offset 0.178 0.356 0.534 0.712 0.890 1.068 1.246 1.424

1.4 Table 3 - Performance assessment for LNCaP analysis by copy number
Results are shown for 100bp-bins with a mappability of at least 0.75 stratified into the four most frequent
copy number states. A threshold of 13 is applied for the depth of the Sssl-control. Shown are the number

of bins per copy number state, mean bias, MSE and Spearman correlation.
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Copy number  #Bins Method Bias MSE Cor

2 18011 BayMeth (adj)) 004 004 078
BayMeth (unadj) -0.12 0.06 0.78
Batman 0.03 0.06 0.74
MEDIPS -0.23  0.11 0.76
3 65982 BayMeth (adj) 0.05 0.04 0.80
BayMeth (unadj) -0.02 0.04 0.80
Batman 0.11  0.06 0.77
MEDIPS -0.19 0.09 0.76
4 256078 BayMeth (adj) 0.05 0.04 0.81
BayMeth (unadj) 0.05 0.04 0.81
Batman 0.16 0.08 0.79
MEDIPS -0.17  0.09 0.76
5 11790 BayMeth (adj) 0.04 0.03 0.83
BayMeth (unadj) 0.08 0.04 0.83
Batman 0.18 0.08 0.80
MEDIPS -0.12  0.07 0.80

Supplementary Figures
1.5 Figure 1 - CpG-density stratified by CpG island status
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Genome-wide CpG-density for bins with a mappability larger than 75% stratified by CpG island status as
extracted from the cpglslandExt-table of the UCSC genome browser. The vertical line marks the
intersection of both densities. The grey tick-marks along the x-axis illustrate the CpG-density classes used

for the empirical Bayes approach in the IMR-90 application.
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1.6 Figure 2 - Normalizing offset

Offset = 0.596

log2(IMR90/Sssl)

M=

0 2 4 6 8
A=l0g2(IMR90*Sssl)/2

Log-fold change (M) versus log-concentration (A) illustrated for 50000 randomly chosen bins. The red
dotted line shows the 0.998 quantile g of A determined from all bins. The red straight line shows the
estimated normalization offset f = 2median(Ma>q) = A >smear’ of yellow points at a low A value represents

counts that are low in either of the two samples.

1.7 Figure 3 - Copy number frequencies for LNCaP
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Copy number frequencies in LNCaP for 100bp-bins with a mappability larger than 0.75.
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1.8 Figure 4 - Read depth of LNCaP by copy number
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Read depth stratified by copy number is shown for 100bp-bins with a mappability larger than 0.75 and

with a Sssl depth larger than four. Median and mean read depth are given per copy number state.

1.9 Figure 5 - Distribution of estimated methylation levels for Sssl sample using lllumina
HumanMethylation450 arrays
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Density plot of 450k beta values.
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