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Abstract
A classic understanding of the interplay between B and T cell components of the immune system that drive autoimmunity,
where B cells provide an effector function, is represented by systemic lupus erythematosus (SLE), an autoimmune condition
characterised by the production of auto-antibodies. In SLE, CD4 þ T cells provide cognate help to self-reactive B cells, which
in turn produce pathogenic auto-antibodies (1). Thus, B cells act as effectors by producing auto-antibody aided by T cell
help such that B and T cell interactions are unidirectional. However, this paradigm of B and T cell interactions is challenged by
new clinical data demonstrating that B cell depletion is effective for T cell mediated autoimmune diseases including type I
diabetes mellitus (T1D) (2), rheumatoid arthritis (3), and multiple sclerosis (4). These clinical data indicate a model whereby
B cells can influence the developing autoimmune T cell response, and therefore act as effectors, in ways that extend beyond
the production of autoantibody (5). In this review by largely focusing on type I diabetes we will develop a hypothesis that
bi-directional B and T interactions control the course of autoimmunity.
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Introduction

A classic understanding of the interplay between B

and T cell components of the immune system that

drive autoimmunity, where B cells provide an effector

function, is represented by systemic lupus erythema-

tosus (SLE), an autoimmune condition characterized

by the production of auto-antibodies. In SLE,

CD4 þ T cells provide cognate help to self-reactive

B cells, which in turn produce pathogenic auto-

antibodies [1]. Thus, B cells act as effectors by

producing auto-antibodies aided by T cell help such

that B and T cell interactions are unidirectional.

However, this paradigm of B and T cell interactions

is challenged by new clinical data demonstrating that

B cell depletion is effective for T cell mediated

autoimmune diseases including type I diabetes

mellitus (T1D) [2], rheumatoid arthritis [3], and

multiple sclerosis [4]. These clinical data indicate a

model whereby B cells can influence the developing

autoimmune T cell response, and therefore act as

effectors, in ways that extend beyond the production

of auto-antibody [5]. In this review by largely focusing

on T1D we will develop a hypothesis that bi-

directional B and T interactions control the course

of autoimmunity.

Type I diabetes mellitus

T1D is an autoimmune disease marked by insulin

deficiency and hyperglycemia [6]. The target of the

autoimmune attack is the insulin producing pancreatic

beta cell residing within the islet of Langerhans.

Correspondence: Shane T. Grey, Gene Therapy and Autoimmunity Group, Immunology Program, Garvan Institute of Medical Research,
384 Victoria Street, Darlinghurst, NSW 2010 Australia, Tel.: 011-61-2-9295 8104; Fax: 011-61-2-9295 8404. E-mail: s.grey@garvan.org.au

Autoimmunity, August 2012; 45(5): 377–387
q Informa UK, Ltd.
ISSN 0891-6934 print/1607-842X online
DOI: 10.3109/08916934.2012.665527

A
ut

oi
m

m
un

ity
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

N
ew

 S
ou

th
 W

al
es

 o
n 

08
/2

1/
12

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



Disease development indicates a failure of the immune

system to maintain self-tolerance. Many lines of

evidence support the concept that T cells play an

important role in beta cell destruction in T1D.

Lymphocytes including both CD4 þ and CD8 þ T

cells that recognize tissue specific antigens are found

within the lesions of T1D subjects [7–12] as indeed

they are in animal models of T1D [10, 13, 14] such as

the non-obese diabetic (NOD) mouse [15]. In man,

progression to T1D is associated with certain MHC

alleles [16], disease can be transferred by bone

marrow transplantation [17, 18], and conversely,

diabetes development can be slowed by treatment with

immunosuppressive drugs that target T cells [19]

[20]. Thus our current understanding of T1D is that

T cells specific for beta cell antigens comprise an

important class of effectors and are essential for

diabetes pathogenesis.

B cell depletion and type I diabetes mellitus

Given the notion that T1D is considered a T cell

dependent disease, it was of great interest that human

subjects with T1D showed improved metabolic

control when treated with a B cell depleting agent

[2, 21]. The B cell depleting agent utilized, rituximab,

targets the CD20 antigen on the cell surface of naı̈ve

and memory B cells resulting in B cell depletion

through mechanisms including complement-

mediated cytotoxicty [22]. In the T1D trial, newly

diagnosed T1D subjects received infusions of ritux-

imab on days 1, 8, 15, and 22 of the study. Patients

treated with rituximab showed partially preserved

beta-cell function at one year post treatment as

evidenced by decrease in loss of C-peptide and less

insulin requirements [2]. These data might support

the notion that B cells are essential for diabetes to

develop. However this conclusion needs to be

tempered somewhat by the single report of a subject

with hereditary B cell deficiency presenting with T1D

[23], suggesting that diabetes can under some

circumstances progress without B cells.

In trials separate to the T1D study, B cell depletion

with Rituximab was shown to be effective for other T

cell mediated diseases [5] including multiple sclerosis

[4] and rheumatoid arthritis [3]. That human subjects

with T1D showed improvement with B cell depletion

demonstrates, and supports, the concept that B cells

make salient contributions to the pathogenic process

leading to T1D [24]. Given the important contri-

bution of T cells as effectors of beta cell destruction in

T1D [6], the clinical data also reveals the possibility

that bi-directional B and T interactions play important

roles in the course of autoimmune diseases character-

istically considered to be T cell mediated in their

aetiology.

Clinical evidence that B cells play a role in type I

diabetes mellitus

Prior to the clinical trials with Rituximab, earlier data

was suggestive of a role for B cells in the pathogenesis

of T1D. B cells contribute to the mononuclear cell

lesions [25] long known to be associated with T1D [7,

9]. Further to this, a well-characterized feature of

T1D is the production of auto-antibodies [25, 26]. In

T1D subjects auto-antibodies can be found that target

islet proteins including insulin, glutamic acid dec-

arboxylase (GAD) and the tyrosine phosphatase-like

molecules IA-2/IA-2b [27]. Further, the presence of

anti-islet autoantibodies can be utilized to predict risk

[28, 29], which suggests that B cell activation is a

component of diabetes pathogenesis.

Animal models reveal a role for B cells in type I

diabetes mellitus

Studies in the NOD mouse, an important animal

model of diabetes [15], support a role for B cells in

diabetes pathogenesis. As has been found in human

cases of T1D [25], B cells infiltrate the NOD pancreas

during the early stages of insulitis, where they can

comprise as much as 60% of the mononuclear

infiltrate [30–32]. NOD B cells remain a constant

component of the pancreatic infiltrate once formed

[33,34], providing evidence that B cells could be

contributing to the autoimmune phenotype at

multiple stages in the disease process.

Serreze and colleagues, as well as Akashi et al.,

introduced the mMT mutation onto the NOD

background [35,36]. mMT mice have no mature B

cells in the periphery due to the introduction of a

functionally inactivated immunoglobulin m heavy

chain gene, deleting IgM and resulting in B cell

developmental arrest in the bone marrow [37]. The B

cell deficient NOD (NOD.mMT) mice strains are

resistant to the development of diabetes [35,36]. Of

interest, NOD.mMT mice still exhibited an early

insulitic lesion [36,38,39]. These observations indi-

cate that B cells are more important for the

progression to hyperglycemia, though it was originally

suggested that B cells were required for the initiation

of the primary autoimmune response [35]. Sub-

sequently, it was demonstrated that reconstitution of

NOD.mMT mice with B cells from NOD donors

could recapitulate diabetes development [40]. In

separate studies, two groups demonstrated that

inhibition of B cell development by either adminis-

tration of anti-mouse Ig [41] or anti-IgM antibody

[42] abrogated disease development in NOD mice.

Effect of manipulating B cells in adult NODmice

More recently, a series of studies to target B cells in

otherwise B cell sufficient adult NOD mice has
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demonstrated a key role for B cells in diabetes

development [21]. B cell reduction was achieved via

monoclonal antibodies that directly target the B cell

surface proteins CD20 [43,44] or CD22 [45]; or, by

preventing B cell access to trophic support provided

by the B cell activating factor (BAFF) system via

monoclonal antibody mediated blockade of BAFF

[46] or administration of a B cell maturation protein

(BCMA)-receptor fusion protein (BCMA-Fc) [47],

that is capable of blocking both BAFF and a

proliferation-inducing ligand (APRIL) [48]. These

studies all found that diabetes was prevented when B

cell depletion was provided prior to the onset of

clinical disease, and in some cases disease progression

could be reversed when B cell depletion was provided

after clinical disease onset.

Collectively, these studies demonstrate a necessary

role for B cells in diabetes pathogenesis in the NOD

model. It is worthwhile to note that the very definitive

results from the above-mentioned mouse studies

contrast with the human data, where B cell depletion

showed efficacy but did not provide complete

protection [2], and indeed some human data suggests

B cells are redundant [23], if even under rare

circumstances. These differences may indicate the

inability of the NOD mouse model to reflect the true

heterogeneity of the human disease.

B cells as effectors: production of autoantibody

The presence of circulating auto-antibodies in human

subjects with T1D specific for islet-derived antigens

raises the possibility of a pathogenic role. This is

supported somewhat by the observation that in

human T1D, pancreatic islets exhibit antibody

deposits in situ [25]. To date, and in contrast to

human T1D, only insulin has been identified as a

specific target of auto-antibodies in the NOD model,

although auto-antibodies that nonspecifically bind to

GAD and IA-2 are present [49]. Auto-antibodies

could play a number of different roles in diabetes

pathogenesis, such as inducing beta cell destruction

by stimulating antibody-dependent cell-mediated lysis

(ADCC) of target cells [25] or aid antigen capture

and uptake by antigen presenting cells [50–52].

Infusion of immunoglobulin from diabetic NOD

mice into B cell deficient NOD.mMT mice did not

recapitulate diabetes nor cause islet damage

suggesting that antibodies may not be a dominant

effector of beta cell destruction [39,40]. Other studies

examining the role of auto-antibodies in diabetes

pathogenesis found that maternally transmitted auto-

antibodies were required for T1D susceptibility in

the progeny of female NOD mice [53], though

insulin-specific auto-antibodies did not mediate this

effect [54].

This suggested that auto-antibodies that cross the

placental boundary or auto-antibodies transferred

during lactation could play a role in priming diabetes

development. However, in human studies examining

whether fetal exposure to islet auto-antibodies

modified the risk of T1D did not support these

NOD mouse data [55]. Thus despite their predictive

value [28,29], and some anecdotal evidence to suggest

a pathogenic role [25] the significance of auto-

antibodies in human T1D remain uncertain. These

data contrast T1D with autoimmune conditions like

multiple sclerosis, where a direct pathogenic role for

auto-antibodies has been more clearly demonstrated

[56,57].

B cells as effectors: an antibody independent role

In an effort to tease out the role of auto-antibody in

autoimmune diabetes, Wong and colleagues generated

transgenic mIg.NOD mice in which all B cells express

a non-secreted form of IgM on the cell surface [39].

Compared to B cell deficient NOD mice, these

mIg.NOD mice developed insulitis and diabetes

suggesting that auto-antibody production is not the

essential contribution of B cells to diabetes develop-

ment [39]. Another relevant model that illuminates

the role of B cells, beyond auto-antibody production,

is the TNFa-transgenic NOD mouse [58,59]. TNFa-

transgenic NOD mice develop an accelerated form of

diabetes, but when introgressed onto the B cell

deficient NOD.mMT background, results in signifi-

cantly delayed diabetes [60], similar to NOD B cell

deficient mice [35]. Reintroduction of B cells

incapable of secreting immunoglobulin into TNFa-

transgenic NOD mice was sufficient to restore

diabetes development [60]. Taken together, these

findings indicate that the antibody-secreting function

of B cells is unlikely to be the dominant role by which

B cells contribute to the development of diabetes in

NOD mice.

B cells are required to generate productive

CD4 1 T cell responses

The animal studies highlighted here all point to an

antibody-independent mechanism by which B cells

modulate diabetes development. One possible mech-

anism by which B cells can modulate diabetes

development is by providing cognate help or trophic

support to the nascent self-reactive T cell immune

response. Indeed, in the NOD model a number of

studies point to B cells as important antigen

presenting cells. Falcone and colleagues showed that

T cells from B cell deficient NOD.mMT mice did not

proliferate in response to the self-peptide GAD65 as

compared to T cells from B cell sufficient NOD mice

[61]. In parallel studies, it was demonstrated that T

cells from NOD mice showed stronger proliferative

responses in vitro to B cells rather than to B cell

deficient antigen presenting cells [40]. Moreover,

B and T cell interactions in autoimmune diabetes 379
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T cells from diabetes-resistant NOD.mMT mice failed

to respond to GAD65, whether it was presented by B

cells or non-B cell antigen presenting cells [40].

Later studies demonstrated an absolute require-

ment for B and T cell cognate interactions for the

activation of self-reactive CD4 þ T cells [62]. When B

cell deficient NOD.mMT mice were reconstituted

with splenic B cells carrying the NOD susceptibility

MHC class II haplotype, IAg7, diabetes developed

[62]. However, when NOD.mMT mice were recon-

stituted with MHC class II deficient B cells, diabetes

did not develop [62]. Thus, despite the presence of

MHC class II on all non-B cell antigen presenting

cells, the singular absence of B cell surface MHC class

II prevented diabetes development. Indeed, self-

reactive CD4 þ T cells are particularly attuned to B

cell surface MHC class II as T cells transferred into

NOD mice reconstituted with MHC class II deficient

B cells do not proliferate [62].

Further, the proliferation of BDC2.5 CD4 þ T

cells, a self-reactive CD4 þ T cell line cloned from

NOD mice [63], was severely impaired when

transferred into B cell deficient NOD mice, as

compared to the proliferative response observed for

B cell sufficient NOD mice [38]. Importantly, purified

B cells were shown to be able to internalize, process

and present intact insulin, a prominent islet auto-

antigen [64], to self-reactive NOD T cells [34,65].

This capacity to present insulin peptides to self-

reactive CD4 þ T cells resides in both the follicular

and marginal zone B cell compartments [34], the two

mature splenic B cell subsets [66]. These animal

studies demonstrate that B cells can dictate the

CD4 þ T cell autoimmune response, indicating the

importance of bi-directional B and T cell interactions

in the development of autoimmunity.

B cells and epitope spreading

B cell-derived signals may be particularly important

for epitope spreading and the subsequent maturation

of the self-reactive CD4 þ T cell immune response.

Insulin and GAD proteins, produced by the pancrea-

tic beta cell, are significant auto-antigens [10,67] and

a target of the self-reactive T cell repertoire [13,61]. It

is possible that insulin, amongst others, constitutes a

primary antigenic determinant [68,69] driving the

initial T cell attack, which subsequently spreads to

other epitopes and antigens as disease progresses

[68–71]. The process of epitope spreading may be

particularly sensitive to loss of B cell derived signals

[61]. In other studies mapping T cell responses to

defined auto-antigens in the NOD model, GAD was

identified as one primary T cell target [72,73]. The

anti-GAD response subsequently spreads to other

antigens including insulin [73]. In the absence of B

cells, the anti-GAD T cell response did not spread to

additional antigens correlating with a failure to

progress to fulminate diabetes [71].

Anatomical locations for B-T cell interactions in

type I diabetes mellitus

The pancreatic lymph node is one potential cellular

location where the spreading of the self-reactive T cell

response can occur. Self-reactive CD4 þ T cells

engage antigen presenting cells in the pancreatic

lymph node [74,75]. B cells expressing a high density

of co-stimulatory molecules accumulate in the

pancreatic lymph node of NOD mice with time [34],

and this B cell presence correlates with an increased

pool of activated self-reactive CD4 þ T cells [34].

Depletion of B cells in NOD mice prior to the onset

of clinical disease, but after the initial priming of the

self-reactive T cell response and the advent of insulitis,

prevents the onset of diabetes [43–47]. B cell

depletion mediated by blocking BAFF with the

BCMA-Fc fusion protein [47], or with monocloncal

antibodies targeting CD20 [76], reduced the fre-

quency of self-reactive CD4 þ T cells within the

pancreatic lymph node exhibiting an activated

phenotype [47,76]. These data highlight the pancrea-

tic lymph node as an important site for B and T cell

interactions; further studies could focus on this

anatomical location with regards to epitope spreading.

B cells as the preferred antigen presenting cell

for self-reactive CD4 1 T cells

It is interesting that self-reactive CD4 þ T cells

appear to be particularly dependent upon cognate

interactions with B cells in the context of autoimmu-

nity, given that antigen presentation is characteristi-

cally considered to be a function dominated by

dendritic cells [77]. Analysis of T cell responses in the

context of B cell depletion showed that T cells are able

to respond normally to TCR ligation in vitro and

proliferate in response to a nominal antigen in vivo

[76]. Further, T cells are able to mount some effector

responses including allograft rejection in B cell

deficient environments [78,79]. Analysis of T cell

populations after B cell depletion shows that B cells do

not control the homeostatic maintenance of CD4 þ T

cells in the periphery [47;76]. Rather, CD4 þ T cells

appear particularly dependent for B cell help in the

context of autoimmune responses [47,76]. This

dependency may relate to defective antigen presenting

activity present in other cellular compartments

including the macrophages and dendritic cell subsets

of NOD mice [80–82] a characteristic also noted for

antigen presenting cells isolated from human subjects

with T1D [83–85].

By contrast, self-reactive CD4 þ T cells are

particularly responsive to co-stimulation by NOD B

cells [38,86] which are enriched for the expression of
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A
ut

oi
m

m
un

ity
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

ni
ve

rs
ity

 o
f 

N
ew

 S
ou

th
 W

al
es

 o
n 

08
/2

1/
12

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



MHC class II, CD80 and CD86 [34;65,87]. The

NOD B cell pool also harbours an increased frequency

of self-reactive clonotypes [24] stemming from defects

in B cell tolerance and negative selection [88–91].

In addition, B cells isolated from human subjects

with T1D show evidence of reduced receptor editing,

an important mechanism for tolerizing autoreactive B

cells [92]. These features, perhaps coupled with

the given capacity of B cells to provoke effector T cell

responses when antigen supply is limiting [76; 93;

94] may result in B cells functionally dominating

as a preferred antigen presenting cell in the context

of T1D.

B cells and self-reactive CD8 1 T cells

In addition to aiding the self-reactive CD4 þ T cell

response via presenting auto-antigen, there is the

possibility that B cells may be necessary for the full

activation of self-reactive CD8 þ T cells [95]. When

TNFa-transgenic NOD mice [60] were crossed to B

cell deficient NOD.mMT mice diabetes was signifi-

cantly delayed compared to their B cell sufficient

counterparts [60].

Of note, diabetes development in TNFa-transgenic

NOD mice is CD8 þ T cell dependent. The require-

ment for B cell help was shown to be antibody

independent as re-introduction of B cells incapable of

secreting immunoglobulin restored diabetes develop-

ment [60]. B cell deficiency resulted in apoptosis

of intra-islet self-reactive CD8 þ T cells [60]. One

possibility is that B cells provided trophic support

for the maturation and expansion of self-reactive

CD8 þ T cells [96] via the production of cytokines

[97].

In another study, NOD mice were B cell depleted by

administration of BCMA-Fc to block the action of

BAFF and APRIL [47]. The BCMA-Fc treated mice

showed complete protection from diabetes [47].

Protection was associated with a decrease in the

circulating levels of the cytokine IL-15, required for

CD8 þ T cell maturation and effector function, as

well as IL-7 and IL-17 [47]. Further, BCMA-Fc-

treated mice exhibited a reduced frequency of

CD8 þ T cells expressing CD40L in the pancreatic

lymph node [47]; CD40L has been suggested to be a

marker of activated self-reactive effector T cells [98].

These data suggest that B cell depletion prevented the

access to critical cytokines needed for development of

the effector CD8 þ T cell response. One possibility is

that by preventing B-CD4 þ T cell interactions,

elaboration of cytokines by CD4 þ T cells is reduced.

B cell production of cytokines that regulate auto-

immunity

As well as cognate B-T cell interactions, B cells can

secrete soluble factors to support the autoimmune

response. Some data suggests that B cells can be

functionally sub-divided on the basis of their profile of

secreted cytokines [97]. As one example, B cells

primed by T cells and antigen in the presence of Th1-

type cytokines will produce IFN-gamma, the p40

subunit of IL-12 but also TNF [97]. In the NOD

model the entry of self-reactive T cells into the

pancreas is a critical development in the progression

of autoimmune diabetes. A role for B cell secreted

cytokines in T1D has been demonstrated in mice

co-expressing the OVA-specific TCR transgene,

DO11.10, and the RIP-mOVA transgene [99].

These mice develop diabetes, however in DO11.10

RIP-mOVA mice lacking B cells T cells are primed in

the pancreatic lymph node but fail to enter the

pancreas and diabetes does not develop [99]. How-

ever, when the B cell deficient DO11.10-RIP-mOVA

mice were reconstituted with B1 cells, T cells regained

entry into the pancreas [99].

The mechanism by which B1 cells facilitated T cell

migration was to localise to the pancreas and elaborate

TNF, which in turn induced expression of adhesion

molecules on the pancreatic vasculature, specifically,

VCAM-1 and MAdCAM-1 [99]. In another

study administration of antibodies to MAdCAM-1

inhibited . 90% of B cell migration into the

pancreatic lymph node [100], the site of T cell

activation. Further, depleting B1 cells prevents

diabetes in NOD mice [101]. Thus B1 cells are

emerging as a new player in the pathogenesis of T1D

through their ability to elaborate cytokines.

B cells as effectors that dampen auto-immunity

Much of the evidence we have reviewed so far

supports the concept that B cells can act as drivers of

the self-reactive T cell response. However, there are

some data that suggests B cells can act as negative

regulators, and suppress the auto-immune response in

T1D.

In support of this possibility, one study showed that

transfer of LPS-activated NOD B cells to NOD mice

reduced diabetes incidence from 90% in control

groups to , 20% [102]. The LPS-activated B cells

expressed Fas ligand and secreted TGF-beta [102],

two immunoregulatory molecules with known protec-

tive effects in diabetes models [103,104]. The LPS-

activated B cells were able to induce apoptosis of

diabetogenic T cells as well as mononuclear cells and

impaired the activity of antigen presenting cells [102].

These data support the concept B-T interactions can

have a regulatory impact upon autoimmunity.

In another study it was found that BCR-stimulated

NOD B cells delayed and prevented diabetes when

transferred into pre-diabetic young NOD mice,

whereas treatment after the insulitis phase delayed

the onset, but did not reduce, T1D [105]. The

protective effect was dependent upon production of

B and T cell interactions in autoimmune diabetes 381
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IL-10, as transfer of BCR-stimulated NOD B cells

from NOD.IL-10– /– mice did not confer protection

from T1D [105]. The transferred B cells directly

reduced T cell activation, decreased islet inflam-

mation, and caused the production of cytokines more

typical of Th2 immunity exemplified by increased IL-

4 and IL-10 production.

B cell regulatory populations in NOD mice?

These data indicate that B cells can express soluble

factors to mitigate, or alter the ongoing diabetes

pathogenesis. Emerging data from other models

indicate that B cells that can directly suppress

inflammation and dampen T cell immune responses

can be engendered under conditions of chronic

inflammation, such as colitis [106]. In some cases

these so named regulatory B cells [107] have been

identified as B cells expressing high levels of CD1d

and producing IL-10 [108].

As well as playing a role in the regulation of gut

inflammation, these B regulatory cells can modulate

autoimmunity through the production of IL-10 as

shown in experimental autoimmune encephalomyeli-

tis, a mouse model of multiple sclerosis [109,110]. It is

of interest that these cells are engendered under

conditions of chronic inflammation, and express

CD1d [107]. NOD mice exhibit prolonged pancreatic

insulitis and also harbour an expanded population of

splenic marginal zone B cells [34,111–113]. A feature

of marginal zone B cells is their unique location,

positioned at the marginal sinus, but also their high

surface expression of CD1d [114].

Of interest, NOD mice also exhibit an accumulation

of CD1d high expressing cells in the pancreas and

pancreatic lymph node [34]. The surface phenotype of

these CD1d B cells is reminiscent of splenic marginal

zone B cells [34]; however, it would be of interest to

explore further whether the pancreatic NOD CD1d

high B cells [34] express features of regulatory B cells

and are acting to suppress or drive autoimmune

diabetes.

B cells and antigen specific tolerance

The suppressive activity of B cells can be harnessed to

generate antigen specific tolerance in autoimmunity.

In an effort to achieve antigen specific regulation, a

retroviral mediated gene expression approach was

utilised to express GAD in B cells [115]. Adminis-

tration of GAD-IgG retrovirally transduced B cells

stopped diabetes development in NOD mice [115].

Fas ligand was found to be important for generating

this protective effect as when donor B cells were

derived from Fas ligand-negative gld mice protection

from diabetes was not achieved [115]. Taking a

different route to generate antigen specific responses,

B cells were transduced with a TAT-fusion protein

containing insulin called TAT-B9-23 [116].

The insulin specific TAT-B9-23-B cells also delayed

the onset of diabetes when transferred into NOD mice

[116]. These results show that B-T cell interactions

can be harnessed to generate antigen specific

tolerance. In man, T1D can be ameliorated by the

administration of systemic immunosuppression [20],

agents more often used in the context of organ

transplantation. However, these approaches are

marred by the problems associated with a compro-

mised immune system and increased risk of organ

damage [117]. Thus, the development of antigen

specific therapies targeting autoimmune activity while

sparing normal immune function is desirable.

B cells can engender Foxp3 1 regulatory T cells

to dampen autoimmunity

One of the mechanisms by which B cells can restore

immune tolerance is by engendering Foxp3 þ

regulatory T cells. In a follow-up study to earlier

work described above [115], it was shown that the

diabetes protective effect of GAD-IgG retrovirally

transduced B cells was dependent upon the induction

of CD4 þ Foxp3 þ Treg cells [118]. The generation

of CD4 þ Foxp3 þ Treg cells required both TGF-

beta or IFN-gamma, as blocking these factors

prevented the conversion of CD4 þ T cell precursors

into CD4 þ Foxp3 þ Treg cells [118].

It is interesting to consider the role of inflammation

in framing the environment for inducing B cells that

suppress autoimmune diabetes by engendering

Foxp3 þ regulatory T cells. In mice over expressing

the B cell survival factor BAFF, a chronic inflam-

mation ensues with the mice developing autoimmune

like conditions [48,119]. Autoimmunity in BAFF-

transgenic mice is dependent upon B cell hyper-

activation and signals provided through the Toll like

receptors [120]. Within this inflammatory environ-

ment BAFF-transgenic mice exhibit a ,3-fold

increase in Foxp3 þ regulatory T cells that suppress

T cell mediated rejection of an islet allograft [78]. In

the absence of B cells, the expansion of Foxp3 þ

regulatory T cells does not occur [78], suggestive of a

link between autoimmunity and B cell dependent

expansion of Foxp3 þ regulatory T cells.

Chronic inflammation is also a critical environmen-

tal determinant necessary for the generation of IL-10

producing regulatory B cells [107]. It is possible that

inflammatory activation of B cells is a key trigger for

promoting a B cell phenotype that can engender

regulatory T cells and suppress diabetes. In the case of

antigen-specific tolerance induction driven by infusion

of TAT-B9-23 expressing B cells [116] or GAD-IgG

retrovirally transduced B cells [118] LPS was utilised

to activate the B cells prior to their genetic

manipulation. Whether Foxp3 þ regulatory T cells
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also play a role in the protective effect when B cells

were stimulated with LPS was not determined

[102,116,118].

The ability to engender regulatory T cells may be a

B cell function not necessarily restricted to inflamma-

tory activated B cells. In some studies it was shown

that unstimulated B cells can interact with T cells to

engender Foxp3 þ T cells that show suppressive

activity [121,122]. Of interest, these approaches can

be used to generate human antigen specific regulatory

T cells, furthermore antigen specificity was dictated

by the interacting B cell [123] supporting the proof-of-

concept approaches where auto-antigen-expressing

NOD B cells showed efficacy against diabetes in the

NOD model [115,116,118].

Concluding remarks

B cells play an essential role in immunity and in the

pathophysiology of auto-immune disease through the

production of immunoglobulin. T cell dependent B

cell responses necessitate T cell help to support

formation of productive antibody producing plasma

cells [124]. This unilateral relationship of B and T cell

interactions could be presumed to be most important

for the development of autoimmunity. However it is

clear from the many examples provided in human

T1D, and from animal models of diabetes, that

complex bi-directional cross talk stemming from the B

to the T cell are also at play. Thus, B cells form a

central nexus in the development of T1D, marking

them as a highly desirable therapeutic target for T1D

[21] but also other T cell-dependent autoimmune

diseases [5].
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