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Introduction 

Metabolomic analysis has been defined as "a comprehensive and quantitative analysis of the 

metabolome” (Fiehn 2001), where the metabolome is the full suite of metabolites contained 

within a biological system. Due to the diversity of the chemical properties of metabolites and the 

limitations of analytical techniques, it is presently impossible to measure the complete 

metabolome. Therefore the definition for a similar term, metabonomic analysis, appears more 

appropriate -  “the quantitative measurement of the time-related multi-parametric metabolic 

response of living systems to pathophysiological stimuli or genetic modification” (Nicholson et 

al. 1999). Currently, the terms “metabolomic” and “metabonomic” are considered to be 

synonymous. In short, metabolomic analysis refers to the comprehensive study of the responses 

of small molecules (metabolites) to experimental or environmental challenge. High-throughput 

analytical techniques (e.g. GC-, CE- and LC-MS, and NMR) are used to measure multiple 

metabolites simultaneously in biological samples.  

 

In nutrigenetic and nutrigenomic research, metabolomic analysis can be used to determine how 

food-derived metabolites are modified by the consumer, including by the intestinal microbiota, 

and how they may influence gene expression to produce a certain phenotype. Metabolomic 

analysis can also be used to identify metabolite biomarkers that indicate consumption of 

particular foods or the consumer’s state of health and risk of disease. This chapter provides a 

brief introduction to metabolomic methodologies, and explains how metabolomic analysis can be 

applied in nutrigenomic and nutrigenetic research. Some examples of applications of 

metabolomics analysis to nutrigenetic and nutrigenomic research are provided. 
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Metabolomic methodologies 

Analytical platforms 

Metabolomic analysis requires analytical technologies that are capable of the precise 

quantification of numerous and diverse metabolites in biological samples. No single analytical 

technique can measure the complete metabolome due to the diverse chemical properties of 

metabolites and the limitations of the analytical technologies presently available. The use of 

different biological samples, sample processing methods and analytical technologies (platforms 

and instruments) results in the measurement of a broad range of metabolites and is required for 

comprehensive analysis of the metabolome.    

 

The choice of analytical platforms and instruments depends on the classes of metabolites that 

may, a priori, be of interest, and whether a targeted or non-targeted approach to their 

measurement is to be taken. In a non-targeted approach, no prior selection of metabolites for 

precise quantification is made and the methodology focuses on the measurement of the 

maximum number of metabolites rather than on the type or chemical identity of these 

metabolites. This approach may measure metabolites of unknown chemical structure and allows 

for the discovery of experimental effects on novel metabolites of as yet unknown function. Thus 

sample preparation is usually minimal to enable the retention in the sample extract of as many 

metabolites as possible. This non-targeted approach is more suitable for metabolite profiling 

studies that do not require metabolite identification and where the pattern of metabolites signals, 

rather than biochemical processes, is of interest or will be used to discriminate between classes 

of samples. In contrast, a targeted approach involves the precise measurement of specific 

metabolites or classes of metabolites (e.g. B-vitamins and tryptophan metabolites (Midttun et al. 
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2009)). Sample preparation is usually more extensive to preserve and enrich for these 

metabolites, and instrument settings are optimized for enhanced and selective detection to aid 

accurate quantification of the metabolites. 

 

The major analytical platforms used to measure metabolites in metabolomic analysis are mass 

spectrometry (usually coupled with chromatographic instruments, e.g. the hyphenated techniques 

of gas chromatography (GC-), liquid chromatography (LC-) and capillary electrophoresis (CE-) 

mass spectrometry), and Nuclear Magnetic Resonance (NMR) spectroscopy, described as 

follows. 

 

Mass spectrometry 

Mass spectrometry refers to the measurement of the apparent masses (technically the 

mass/charge ratios) of metabolites or the products of their fragmentation. Metabolites are 

introduced into the high vacuum of the mass spectrometer where they are ionized (converted into 

charged ions) or are broken into smaller ionized fragments which can be manipulated and 

measured by the instrument. The fragmentation of a metabolite is generally dependent on its 

chemical structure, thus unique mass spectra (graphs of mass fragment ions and their abundance) 

can be generated for most metabolites and used for compound identification.  

 

For metabolomic analysis, mass spectrometers are usually coupled to chromatographic 

instruments to give a separation of the metabolites in a sample prior to mass spectrometric 

detection. This increases the number of individual metabolites that can be detected and 

measured. The type of chromatographic instrument interfaced to the mass spectrometer depends 
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on the metabolites of interest, but is typically a gas or liquid chromatograph or uses capillary 

electrophoresis.  

 

In gas chromatography-mass spectrometry (GC-MS) analysis, liquid samples are vaporized in 

the injector and carried in a flow of helium gas through a capillary column which is coated 

internally with an adsorbent film. The temperature of the column is varied during the 

chromatographic run. Thus the separation of chemical compounds is mainly influenced by their 

boiling points, as well as their chemical affinity with the internal coating in the capillary. This 

technique is ideal for analyzing volatile compounds such as flavor volatiles and fatty acids that 

are sufficiently thermally stable to be easily vaporized for entry into the GC column. For non-

volatile polar metabolites such as simple sugars and amino acids, a chemical derivatization (e.g. 

conversion to their trimethylsilyl ethers) is required to increase their thermal stability and 

volatility before they can be analyzed in this way (Halket et al. 2005).  

 

In liquid chromatography-mass spectrometry (LC-MS), a liquid mobile phase (solvent) is used to 

carry compounds through a column packed with fine particles coated with an adsorbent surface. 

Separation of metabolites is achieved through the different affinities of metabolites for the 

chemical surface of the particles in the column and by progressively changing the composition of 

the liquid solvent phase. A wide range of both polar and non-polar metabolites, including 

structural and stereoisomers, can be separated by using different combinations of 

chromatographic LC columns and mobile phases. 

 

The third mass spectrometry-coupled chromatographic technique with increasing use and 
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significance in metabolomic analysis is capillary electrophoresis-mass spectrometry (CE-MS). 

CE-MS is generally used for the measurement of charged compounds (Monton and Soga 2007) 

where the metabolites are separated according to charge and size in the electro-osmotic flow 

generated by the application of a high voltage to a buffered solution in a silica capillary.  

 

Further information about mass spectrometric metabolomic analysis and the types of mass 

spectrometers can be found in other more extensive reviews (Dettmer et al. 2007; Kind and 

Fiehn 2010, Want et al. 2010). 

 

NMR spectroscopy 

Atoms whose nuclei possess appropriate magnetic properties, such as the stable isotopes 1H and 

13C, absorb radiofrequency energy when subjected to a magnetic field. This energy absorption, 

which occurs at particular radiofrequencies, is referred to as Nuclear Magnetic Resonance 

(NMR) and is reported as the chemical shift. Energy absorption by the various nuclei in a 

metabolite depends on the type of nuclei and the structural arrangement of the atoms (the 

chemical environment). Metabolites can therefore be identified according to the pattern of their 

chemical shifts. Where these patterns of chemical shifts do not totally overlap, prior separation of 

the metabolites in the sample is not required for quantification. This enables multiple metabolites 

to be measured with minimal sample processing in complex samples such as urine or serum. 

NMR procedures for metabolomic analysis of biological samples are described in detail by 

Beckonert et al. 2007. 
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Mass spectrometry compared to NMR 

The relative advantages and limitations of the various hyphenated mass spectrometry and NMR 

spectroscopy techniques provide different opportunities for surveying the complexity of the 

metabolome (Table 11.1). All these techniques are widely used in metabolomic analysis. In 

terms of reproducibility and ease of quantification, NMR performs better than mass 

spectrometry. However, NMR is a relatively insensitive technique that generally provides 

information about only the more highly abundant metabolites. The measurement and 

identification of low concentration metabolites are hindered by the presence of metabolites of 

higher concentrations in the sample, as the NMR resonances of the less abundant metabolites are 

frequently overshadowed by those of the more abundant metabolites. Since NMR is non-

destructive to samples, these less abundant metabolites can however be recovered for analysis by 

more sensitive and selective mass spectrometric methods. 

 

The coupling of mass spectrometers to chromatographic instruments for prior separation of 

metabolites in a complex sample increases the number of detectable metabolites. In addition, 

mass spectrometry is better suited to detecting low abundant metabolites, provided that suitable 

operating parameters (e.g. chromatographic separation from interfering metabolites and 

appropriate ionization conditions) are found. This is especially in the case of LC-MS where 

efficient ionization of metabolites is required for high sensitivity. When mixtures of metabolites 

are analyzed by LC-MS, selective ionization of the more easily ionized metabolites commonly 

occurs (ion suppression) resulting in poor quantitation or even the failure to detect particular 

metabolites. This problem is usually overcome by chromatographic separation of metabolites.  

 



8 

  

Chemical derivatization (e.g. formation of trimethylsilyl ether derivatives) is required before 

non-volatile metabolites such as sugars, and organic and amino acids, can be analyzed by GC-

MS. Such derivatizations are not generally used in LC-MS analysis although they can be used to 

enhance the detection of specific classes of metabolites. Chemical derivatization can complicate 

the analysis through formation of multiple chemical derivatives and the production of chemical 

artifacts. Thus LC-MS analysis offers faster sample throughput and greater flexibility compared 

to GC-MS analysis that involves chemical derivatization.   

 

However, metabolite identification for GC-MS is greatly aided using computer-based matching 

to published mass spectral libraries and databases, as the use of electron ionization at a standard 

70 electron volts ionization energy results in highly reproducible mass spectra. In comparison, 

the reproducibility of LC-MS mass spectra is poor due to the use of different ionization 

techniques, energies and the effects of the sample matrix (Halket et al. 2005).  

 

Overall, the respective chromatographic-coupled mass spectrometry techniques each have their 

own advantages and limitations. Ultimately, the choice of analytical platforms and instruments 

depends on their availability and the particular classes of metabolites which may be of interest. 

Ideally more than one platform or instrument should be used for a more comprehensive coverage 

of the metabolome. 

 

Data analysis 

The data generated from metabolomic analysis of biological samples consist of measurements of 

the absolute and relative concentrations of many metabolites. These measurements collectively 
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represent the metabolite profile of the sample. Depending on the type of instrument, data 

processing is required to convert the information about metabolites from the raw data files into a 

form suitable for statistical analysis.  For example, relevant chemical signals such as peak areas 

of ions arising from individual metabolites must be extracted from GC-MS or LC-MS mass 

spectrum. The peak areas from the spectrum of several samples have to be aligned (corrected for 

differences in chromatographic retention times between samples) and collated into a single data 

file for statistical analysis. Data processing software is usually provided with the instrument but 

may be instrument dependent or limited in function. Open source software that is instrument 

independent is also available, such as XCMS and MzMine (Tohge and Fernie 2009, Smith et al. 

2006). 

 

Normalization is an essential data processing step that is required to correct for factors that could 

bias the interpretation of the data, such as variation arising from analytical processing (e.g. batch 

differences) or the biological condition of the samples (e.g. urine concentration). Various data 

normalization techniques are available (Craig et al. 2006; Dieterle et al. 2006). The inclusion of 

quality control samples throughout the process of sample analysis assists in monitoring and 

correcting for any changes in analytical performance. Recommended quality control samples are 

pooled aliquots of all the samples in an experiment, as every metabolite present in any sample 

will have its corresponding reference in the pooled quality control samples (Sangster et al. 2006).  

 

Metabolomic data consists of measurements of multiple metabolites together with values for 

relatively few other experimental parameters (treatments, time points). Such data can be 

analyzed using multivariate statistical techniques, which consist of unsupervised and supervised 



10 

  

classification methods (Trygg et al. 2007). Unsupervised classification methods, such as 

Principal Components Analysis (PCA) and hierarchical clustering, analyze the variation in the 

data without prior designation of samples into their classes (Manly 2005, Ringner 2008). Such 

methods are useful for identifying unexpected variations and trends in the data. Supervised 

classification methods, such as multiple T-tests and partial-least squares discriminant analysis 

(PLS-DA), compare the variation of samples according to their designated classes. Such methods 

are used for identifying the variables (metabolites) that contribute to the differences between the 

sample classes. Free web-based metabolomic data analysis software incorporating these 

statistical analyses, such as MetaboAnalyst, are now available (Xia et al. 2009). 

 

Public mass spectral databases of metabolites, such as Golm, METLIN and MassBank, are 

available to assist in structure identification (Kopka et al. 2005; Smith et al. 2005; Horai et al. 

2010). Public websites with information on metabolites and metabolic pathways are also 

available to assist in the interpretation of the function of metabolites of interest (Tohge and 

Fernie 2009). Examples include the Human Metabolome Database (HMDB)(Wishart et al. 2009) 

and the KEGG Pathway database (www.genome.jp/kegg). 

 

Metabolomic applications in nutrigenomics/nutrigenetics 

Nutrigenetic and nutrigenomic research seeks to increase our understanding of the interaction 

between foods, genes and nutrition by studying the effects of diet on gene expression and by 

studying genetic differences in dietary response. Knowledge gained from nutrigenetic and 

nutrigenomic research can be used to develop personalized nutrition strategies for optimum 

health. To achieve all these aims, an understanding of the metabolism of the food of interest and 
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the identification of the bioactive food compound is necessary. Quantification of exposure to the 

bioactive compound is required to study its molecular and physiological effects. Biomarkers to 

assess health response to bioactive food components are also required to evaluate beneficial 

effects. These requirements can be achieved using metabolomic analysis, as the technology 

enables multiple metabolites to be screened in parallel in biofluids, tissues or food (Figure 11.1). 

   

Identification of bioactive food components 

The use of metabolomic techniques to profile food metabolites is not a novel concept as 

chromatography-coupled mass spectrometry techniques and high-performance liquid 

chromatography (HPLC) have been used to characterize the composition of plant-based foods 

long before the term “metabolomic” was coined. Over the years, instrument technologies are 

becoming more powerful with increasing sensitivity to identify bioactive compounds in foods. 

The process of identifying bioactive compounds in a food may involve separating the 

components of the food into fractions according to solvent solubility or chromatography, 

followed by testing of the fractions for bioactivity in in vitro cell-based assays or in vivo animal 

feeding studies (bioassay-guided fractionation). Metabolomic analysis can then be performed on 

the bioactive fractions to identify the metabolites that are present. For example, fractionation of 

extracts from raspberry fruit by preparative HPLC by Mullen et al. 2002, and gel filtration by 

Ross et al. 2007, led to a partial discrimination of metabolites responsible for the antioxidant and 

cellular anti-proliferative properties of these extracts.   

 

Isolation or synthesis of the tentatively identified bioactive compounds may need to be carried 

out to confirm chemical identity. These samples can then be tested using the in vitro or in vivo 
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models to confirm their bioactivity. Where the bioactivity of a food is ill-defined or is not related 

in a simple way to one or a few food constituents, the bioassay-guided approach fails. In this 

case, bioactivity may have to be represented by the metabolite profile of the food, which may be 

all the metabolites measured, or a subset of metabolites that best discriminates the food 

according to its bioactivity.  

 

Metabolomic analysis may also be used to probe the relationship between food composition or 

bioactivity with the genetic variation of the plants or animals that the food was derived from 

(Heuberger et al. 2010, Stewart et al. 2007). For example, LC-MS metabolite profiles of cooked 

rice from diverse rice varieties, performed by Heuberger et al. 2010, could differentiate the rice 

varieties according to their subspecies classification. The total phenolics and vitamin E levels 

were linked to single nucleotide polymorphisms (SNPs) of genes in the biosynthesis pathways of 

these compounds. In another example, LC-MS profiling of polyphenolic levels of raspberry 

fruits, performed by Stewart et al. 2007, showed that the metabolites levels were influenced by 

either environmental conditions or genetic variety, indicating that the levels of some polyphenols 

were regulated by rigorous genetic control. Overall, these studies demonstrate that metabolomic 

analysis in conjunction with genomic analysis can uncover genetic influences on the regulation 

of the levels of bioactive or nutritional metabolites in the food. This knowledge can be used to 

optimize food composition through environmental or genetic manipulation of the plant or 

animal. 

 

Quantification of dietary exposure 

Accurate quantification of both food composition and of bioactive food components is required 
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to study the molecular or physiological effects of foods. Conventional methods of measuring 

dietary exposure such as self-reporting of dietary intakes by study participants and the use of 

food composition databases are inadequate and widely acknowledged to be flawed (Macdiarmid 

and Blundell 1998). Self-reporting depends on the individual’s memory, self awareness, honesty 

and dietary response to the data collection process. Food composition databases provide only a 

general or standardized value for the concentration of a food component which may vary 

according to the food source (e.g. the effect of natural plant variation or the use of different 

cultivars), food preparation (e.g. processing, cooking) and the analytical methods used to 

determine the composition. Additionally, the amount of the food component consumed does not 

necessarily reflect the actual amount absorbed by the body due to differences between 

individuals in selective absorption by intestinal transporters or metabolism by the intestinal 

microbiota. Measurement of food-derived metabolites that appear in biofluids such as urine and 

plasma will give a better indication of the actual amount absorbed by the body. An understanding 

of the metabolism of the food component, and time-response relationships between consumption 

of the food component and the appearance of metabolites in biofluids is thus required to select a 

suitable metabolite biomarker of exposure to the food component. 

 

The ability of metabolomic analysis to screen multiple metabolites in parallel makes the 

technique suitable for analyzing biofluids and tissues for metabolites produced by the 

metabolism of food components (Fardet et al. 2008; Stalmach et al. 2009; Urpi-Sarda et al. 2009; 

Winning et al. 2009; Llorach et al. 2010; O'Sullivan et al. 2011) or by the action of the  intestinal 

microbiota on non-digestible food components (Jacobs et al. 2009). Fardet et al. 2008 used LC-

MS to analyze urine collected from rats fed with diets supplemented with lignins or phenolic 
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acids. Data analysis using PLS-DA showed that the metabolic fingerprints of the urine samples 

were similar between lignin-supplemented diets and control diets, confirming that lignins are 

largely inert to digestion and are not absorbed into the body. In contrast, various metabolites 

arising from the metabolism of the phenolic acids were identified.  

 

In a further example, Stalmach et al. 2009 studied the metabolism of coffee polyphenols in 

humans by using LC-MS to analyze urine and plasma collected at several time points within 24 

hours after drinking coffee. Coffee components that were absorbed by the small intestine or large 

intestine could be differentiated according to their presence in urine and plasma samples at 

different time points. Metabolites that were quickly excreted were also identified according to 

their absence in plasma and presence in urine. Urinary dihydrocaffeic acid-3-O-sulfate and 

feruloylglycine were proposed as potential and sensitive biomarkers for coffee consumption.  

Overall, these studies demonstrate that metabolomic analysis of biofluids can be used to 

understand the metabolism of food components and to identify biomarkers of food intake. 

 

Assessment of dietary intervention  

The goal of nutrigenetics and nutrigenomic research is to develop personalized dietary strategies 

for the optimal health of human individuals. Biomarkers of health status and of responsiveness to 

dietary components are therefore required to evaluate the efficacy of nutrigenomic and 

nutrigenetic dietary regimes. The metabolite profile of an organism is closely associated with its 

genotype (Fiehn et al. 2000; Assfalg et al. 2008), as genes code for proteins that participate in 

metabolic pathways. The influence of external factors on gene expression and biochemical 

pathways, such as diet and pathogens, will lead to changes in the metabolite profile. Therefore 
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the levels of metabolites in biofluids can provide information about the health status of an 

organism and their response to diet. Metabolite biomarkers of diseases are already successfully 

used in clinical practice – elevated glucose levels in blood after fasting as an indicator of 

diabetes, and creatinine levels in blood as an indicator of renal function. Nevertheless, new and 

more accurate biomarkers of diseases and therapeutic response are always sought after.  

 

Metabolomic analysis of biofluids and tissues has the potential for biomarker discovery. Ideally, 

large well-characterized cohorts with longitudinal samples should be used for biomarker 

discovery. The accuracy of potential biomarkers must be validated in independent cohorts. A few 

noteworthy examples of biomarker discovery by metabolomic analysis are described as follows: 

 

Wang T. J. et al. 2011 identified a metabolite profile that predicted future diabetes, by 

performing LC-MS metabolomic analysis on plasma samples of 189 non-diabetic individuals 

who later developed diabetes within 12 years, and 189 matched controls. Approximately 60 

metabolites were measured using a targeted approach. Elevated levels of five amino acids, 

isoleucine, leucine, valine, tyrosine and phenylalanine, predicted future diabetes. This result was 

validated in a further study comprising 163 cases and 163 controls.  The authors cited other 

studies that supported the role of amino acids in pathogenesis of diabetes, such as the 

development of insulin resistance in animals and humans supplemented with branched-chain 

amino acids, and correlation of fasting concentrations of amino acid with obesity and insulin 

levels.  

 

Holmes et al. 2008 identified potential urinary biomarkers of cardiovascular disease risk by 
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performing NMR metabolomic analysis of urine samples from 4630 individuals from East Asian 

and Western populations. The urinary metabolite profiles discriminated populations according to 

geographical regions, diets and blood pressure. Formate, alanine and hippuric acid were 

associated with blood pressure and were identified as potential biomarkers of cardiovascular 

disease risk.  

 

The identification of accurate biomarkers for disease is challenging due, in part, to the genetic 

variation that occurs within human populations. Distinct metabolite profiles, associated with 

specific genetic variants, can be determined by combined genetic genome-wide association 

studies and metabolomic analysis as demonstrated by Gieger et al. 2008, Illig et al. 2010 and  

Suhre et al. 2011. The cumulative work of these three studies revealed associations between 

blood metabolite levels and genetic loci related to disease and of pharmaceutical relevance. 

Overall, the levels of over 250 metabolites from 60 biochemical pathways were measured in 

serum samples from 2820 individuals in two large population-based European cohorts (German 

KORA and British TwinsUK studies), using liquid chromatography-tandem mass spectrometry 

(LC-MS-MS).  Geiger et al. 2008 established that the ratios of metabolites as a surrogate for 

enzymatic activity explained a higher proportion of genetic variance than the use of single 

metabolite concentrations alone. Illig et al. 2010 showed that for 8 of 9 genetic loci, the genetic 

variant is located in or near genes encoding enzymes or solute carriers with biochemical 

relevance to the metabolites. Finally, Suhre et al. 2011 identified 37 genetic loci that were 

associated with metabolite concentrations, of which 25 of the loci account for 10-60% of the 

differences in metabolite levels per allele copy. Cross-reference of these genetic loci to databases 

of disease-related and pharmaceutically-relevant genetic associations provided new insights into 
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the functions of these loci and confirmed previous associations. For example, SLC2A9 gene 

variants were associated with uric acid concentrations and self-reported gout (Doring et al. 

2008).     

Even when genetic variants are not known, metabolite profiles can identify subgroups that are 

likely to respond differently to a diet. Clayton et al. 2006 showed that the urinary metabolite 

profiles of rats prior to drug treatment could predict their response towards paracetamol. The 

urinary profiles were generated by NMR analysis. In another example, Rezzi et al. 2007 showed 

that metabolites profiles could be linked to dietary preference, where chocolate-loving and 

chocolate-indifferent individuals have metabolite differences which are present even in the 

absent of chocolate stimulation. The metabolite profiles of the individuals were measured by 

NMR analysis. Some of the differential metabolites were derived from intestinal microbiota 

metabolism, suggesting that dietary habits may influence intestinal microbiota profile. Dietary 

preference can affect health, and is influenced by taste response which is genetically mediated 

(Rezzi et al. 2007). 

 

Overall, these studies demonstrate the potential of metabolomic analysis in identifying 

biomarkers of disease that may be used to assess the efficacy of dietary interventions. The 

advantage of using metabolites biomarkers in biofluids to assess health status is that these fluids 

can be sampled repetitively without dire consequences to the animal or human subject. This is 

useful in both animal and human studies, as the effect of dietary intervention can be monitored 

over time and the outcome of the experiment may be quickly determined through early changes 

in metabolite biomarkers. Repetitive sampling of biofluids is also required for monitoring human 

patients and provides a form of biological replication to confirm findings.  
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Discovery of food and gene interactions 

The identification of metabolite biomarkers of dietary exposure or disease risk can provide 

insights into the pathways of the disease process and their modulation by food components. 

Specific genotypes associated with these pathways that may benefit from dietary modulation can 

be determined. These points are demonstrated by a noteworthy study by Wang Z. et al. 2011 who 

performed non-targeted metabolomic analysis of plasma samples to identify metabolite profiles 

that could predict the risk of cardiovascular disease. The plasma of 50 stable patients who later 

suffered a heart attack, stroke or death within three years, and of 50 matched controls were 

analyzed by LC-MS. A further cohort of 25 cases and 25 controls was used to validate the results 

and to narrow down the number of metabolites to 18 metabolites associated with cardiovascular 

risk. Three of these 18 metabolites were strongly correlated to each other. Further structural 

elucidation analysis using NMR, mass spectrometry, LC-MS-MS and GC-MS-MS, identified 

these three metabolites as trimethylamine N-oxide (TMAO), choline and betaine. Further 

validation using an independent cohort of 1876 subjects confirmed that fasting plasma levels of 

these three metabolites were associated with risk of cardiovascular disease. Animal feeding 

studies with isotope-labeled compounds or antibiotics showed that TMAO is derived from 

trimethylamine, which is produced by intestinal microbial metabolism of betaine and choline, 

where the latter is derived from dietary phosphatidylcholine (lecithin). TMAO is produced from 

trimethylamine through the action of hepatic flavin mono-oxygenases. The authors found that 

TMAO plasma levels correlated with the size of artherosclerotic plaques in artherosclerotic-

prone mice supplemented with choline. Furthermore, TMAO plasma levels, aortic lesion 

formation and HDL cholesterol concentrations correlated with the expression of hepatic flavin 
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monooxygenases in mice. A genetic locus containing the flavin mono-oxygenase gene cluster 

had a strong effect on atherosclerosis in the mice. Examination of plasma TMAO levels in 

humans showed correlations to hepatic expression levels of flavin mono-oxygenase. Overall, 

these findings by Wang Z. et al. 2011 indicate that the cardiovascular risk of individuals with 

certain flavin mono-oxygenase genetic variants may be modulated by their dietary choline, and 

that plasma level of TMAO may be a potential biomarker of cardiovascular health status.  

 

Metabolomic analysis can also be used to understand the differential effects of specific 

genotypes on the absorption and metabolism of foods. For example, Lin et al. 2011 performed 

non-targeted GCMS analysis of urine samples from interleukin-10-deficient (IL10-/-) mice fed 

with extracts of the fruits of yellow- and green-fleshed kiwifruits. The IL10-/- mouse is a model 

of inflammatory bowel disease, and develops intestinal inflammation in the presence of intestinal 

microbiota. The authors found that IL10-/- mice had a higher excretion of metabolites associated 

with the kiwifruit diet compared with the wildtype mice. These differences in the excretion of 

diet-associated metabolites possibly arise through differences in intestinal microbial metabolism 

or through an increase in intestinal permeability, which are both known consequences of IL10 

gene deficiency and of inflammatory bowel disease (Bibiloni et al. 2005, Kennedy et al. 2000). 

In this example, the effect of the gene variant on food metabolites was not through the direct 

interaction of the gene with the food metabolites, demonstrating the usefulness of metabolomic 

analysis in identifying unexpected effects of gene variants on food metabolism. 

 

Summary  

Metabolomic analysis is the comprehensive study of small molecule metabolites using 
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technologies such as mass spectrometry and NMR which enable high-throughput parallel 

measurements of the many metabolites in a complex biological sample. Applications of 

metabolomic analysis in nutrigenetic and nutrigenomic research include the identification of 

bioactive food components and food-derived metabolites, the quantification of dietary exposure 

to metabolites, the identification of biomarkers to assess the efficacy of dietary interventions, and 

the discovery of novel food-gene interactions.    
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Table 11.1. Comparison of different technologies for performing metabolomic analysis. 

 Mass spectrometry NMR 

Measures mass of ionised molecules or molecular fragments 

resulting from fragmentation of metabolites in a vacuum 

Gas 

chromatography  

Liquid 

chromatography 

Capillary 

electrophoresis 

 

Separation of 

metabolites using a 

gas mobile phase 

and a stationary 

phase in a capillary 

column 

Separation of 

metabolites using a 

liquid mobile phase 

and a stationary 

phase in a packed 

column 

Separation of 

metabolites in an 

electrically-

charged liquid 

phase in a silica 

capillary 

Measures energy 

absorption of 

atomic nuclei in 

metabolites at a 

certain 

radiofrequency 

in a magnetic 

field 

Type of 

metabolites 

detected 

Volatile compounds Various Charged 

compounds 

Various 

Quantification Optimisation of chromatographic separation and ionisation 

conditions required for precise quantification of a wide range of 

metabolites 

Easy and 

accurate for 

abundant 

metabolites 

Reproducibility Highly reproducible 

mass spectra that 

can be used to 

identify compounds 

by matching to 

mass spectral 

libraries 

Mass spectra 

influenced by 

ionisation technique 

and sample matrix 

 High 

reproducibility 

for abundant 

metabolites 

Sensitivity High sensitivity for metabolites that can be ionised Low sensitivity 

Sample treatment Chemical 

derivatization 

required for non-

volatile compounds. 

Small amounts 

required. 

Minimal 

preparation. Small 

amounts required.  

Minimal 

preparation. Small 

amounts required. 

Minimal 

preparation. 

Non-destructive, 

sample can be 

reused.  
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Figure 11.1. Contributions of metabolomic analysis to nutrigenomic and nutrigenomic 

research. 

 

 

  

 

 


