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ABSTRACT: The cell cycle is a tightly regulated series of events that governs cell replication and division. Deregulation of cell
cycle kinases, e.g., cyclin-dependent kinases (CDKs), can initiate a hyper-proliferative cell phenotype and cause genomic instability,
thus facilitating malignant transformation. Pharmacological agents targeting CDKs have been developed as potential anti-cancer
agents for over 20 years, evolving from early pan-CDK inhibitors to second-generation inhibitors with much greater specificity
and selectivity. Despite these advances in drug design and highly successful preclinical investigations, CDK inhibitors have yet to
achieve their expected efficacy in clinical trials. In addition, inhibitors of other cell cycle kinases are currently progressing through
clinical trials. Recent biochemical and genetic studies might be used to improve the effectiveness of cell cycle kinase inhibitors
as anti-cancer agents through better drug design, therapeutic combinations, and patient selection.
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ABBREVIATIONS

AML: acute myeloid leukemia; AMPK: adenosine monophosphate-activated protein kinase; ATP:adenosine triphosphate; CDC7:
cell division cycle 7-related protein kinase; CDK: cyclin dependent kinase; FLT: Fms-like tyrosine kinase; GSK3: glycogen
synthase kinase 3; HER2: human epidermal growth factor receptor 2; HIPK: homeodomain-interacting protein kinase; JAK2:
Janus kinase 2; KO: knockout; MAPK: mitogen activated protein kinase; MCL: mantle cell lymphoma; NFkB: nuclear factor
kappa-light-chain-enhancer of activated B cells; NSCLC: non-small cell lung cancer; PDGFR: platelet derived growth factor
receptor; PLK: Polo-like kinase; RB: retinoblastoma protein; SAC: spindle assembly checkpoint; VEGFR: vascular endothelial

growth factor receptor

I. INTRODUCTION

Essential cellular processes such as proliferation,
differentiation, DNA repair, and apoptosis signal to
the cell cycle machinery through intricate networks
of protein kinases. Cell cycle kinases ensure timely
and accurate cell replication by orchestrating DNA
synthesis and cell division while protecting the cell
from DNA damage.'? Deregulation of these kinases
can cause cells to proliferate uncontrollably and leads
to genetic instability, tumorigenesis, and malignancy,
and can potentially be targeted to inhibit cancer pro-
gression.?” In this review, we discuss the potential and
limitations of current cyclin-dependent kinase (CDK)
inhibitors. We also summarize progress in evaluating
other cell cycle kinases as potential therapeutic agents.
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Il. FUNCTIONS OF CELL CYCLE KINASES
AND THEIR DEREGULATION IN CANCER

The CDKs are a family of serine/threonine kinases, five
of which (CDK1,CDK2,CDK3,CDK4,and CDK6)
have been directly implicated in driving the cell cycle
(Fig. 1).! These CDKs act sequentially to govern the
transitions of the cell cycle, i.e., from G, (quiescence),
through G;, and into DNA synthesis (S phase), fol-
lowed by G, and mitosis (M phase). Upon mitogenic
stimulation through signaling routes such as the Ras/
mitogen-activated protein kinase (MAPK) pathway,
D-type cyclins (D1, D2, and D3) are transcription-
ally induced.®7 These cyclins are the cognate binding
partners for CDK4 and CDK®, and following het-
erodimerization, these active cyclin-CDK complexes
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FIGURE 1. Cell cycle kinases known to be deregulated in cancer and their association with cell cycle progression. A
schematic representation of the various stages of the cell cycle, i.e., from quiescence G,, through G, and the DNA
synthesis phase (S), progressing through G,, and finally into mitosis (M), resulting in cell replication. The various CDK/
Cyclin complexes and other cell cycle kinases that drive each particular stage of the cell cycle are also illustrated.

phosphorylate pocket proteins such as retinoblastoma
protein (RB).% In its unphosphorylated form, RB is a
repressor of transcription that binds and inactivates
transcription factors such as E2F family members.?~?
When RB is phosphorylated by cyclin D-CDK4/6,
transcription factors are released, thus facilitating
the transcription of cyclin E, the binding partner for
CDK2. Cyclin E-CDK2 heterodimers reinforce the
phosphorylated state of RB, irreversibly initiating a
positive feedback loop that leads to the expression
of genes necessary to promote cell cycle progression

from G; to S phase.'? Beyond this point progression
through the cycle is independent of mitogenic stimuli,
and RB is maintained in a hyperphosphorylated state
by the sequential activities of cyclin A-CDK2, cyclin
A-CDK1, and cyclin B-CDK1 complexes.! CDK3
is expressed at low levels in mammals, and although
phosphorylation of RB by cyclin C-CDK3 is nec-
essary for exit from G, its function remains largely
undetermined.!!

Aberrant expression of components that govern
G;-S phase transition has the potential to permit cells
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to proliferate independently of mitogenic stimuli,and
thus their role in malignant transformation has been
intensively investigated. CDKs are deregulated in
numerous cancers, including those of the breast, lung,
pancreas, prostate, liver, and skin.?~*'This deregulation
is most commonly attributed to the increased expres-
sion of CDKs and cyclins, and mutation or deactiva-
tion of endogenous CDK inhibitors. CDK4 is most
commonly amplified and overexpressed in gliomas,?
sarcomas, and breast and cervical carcinoma,!3-15
and CDKS6 is amplified in gliomas and lymphoid
tumors.117 However, over-activity of both CDK4
and CDK6 can be attributed to increased cyclin
D1 expression in parathyroid adenoma, leukemia,
lymphomas and multiple myeloma, and colorectal,
gastric, esophageal, lung, kidney, and breast cancer.!®
Cyclin D-CDK4/6 activity can also be enhanced by
inactivation of the endogenous CDK4/6 inhibitor
p16, which can be caused by gene deletion (leukemia
and bladder cancer), point mutation (melanomas and
pancreatic cancer), or epigenetic mechanisms such as
DNA methylation (gliomas, lung cancer, and head
and neck tumors).!”2° There have also been reports
of mutation in CDK4 that render it unable to bind
p16 and chromosomal translocations, leading to over-
expression of CDK6 in distinct tumor subgroups.?-22
However, these genomic alterations are relatively
infrequent. CDK2 is deregulated in lung carcinoma,
melanoma, osteosarcoma, ovarian carcinoma, pan-
creatic neoplasia, and sarcomas, mostly due to the
overexpression of its binding partners cyclin E and
cyclin A, or inactivation of endogenous inhibitors.?

CDK1 co-operates with other kinases, including
Aurora and Polo-like kinases (PLK), to facilitate the
transition from G, to M-phase, serving to regulate
chromosome condensation and microtubule dynam-
ics in preparation for cell division.?>* Aberrant
overexpression of these kinases causes chromosomal
instability and has been implicated in the oncogenic
transformation of a variety of tissues.?*" Increased
activation of CDK1 has been observed in primary
breast, colon, prostate, and lung cancers, often due
to the overexpression of cyclin B1.28-31 Aurora kinase
A (the aurora family member most consistently
associated with cancer) is amplified and/or over-
expressed in several malignancies, including breast,
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colon, pancreas, ovarian, bladder, liver, and gastric
cancer,*?% and PLK1 overexpression is described
in breast, ovary, colon, stomach, pancreas, lung, head
and neck, skin, esophagus, and brain cancer, and
correlates with poor outcome.’”* Since inhibition
of these mitotic components activates the “spindle
assembly checkpoint” and causes apoptosis through
an undefined mechanism, pharmacological agents
targeting these mitotic kinases are being investigated
as potential therapeutics.*

lll. CYCLIN-DEPENDENT KINASE
INHIBITORS

The integral role played by CDKs in the progression
of the cell cycle coupled with the high incidence
of CDK deregulation in cancer provides a strong
rationale for the development of CDK inhibitors
as novel therapeutic agents. Over a period spanning
more than two decades, many molecules that inhibit
CDKs have been identified, the most well studied
of which is the pan-CDK inhibitor Flavopiridol.
Following successful pre-clinical development in
which Flavopiridol inhibited the proliferation of
colorectal (colo 205), lymphoma (HL60), head and
neck (HN12), and prostate (LnCap/DU145) cancer
cells in culture and xenograft models, it progressed
to phase I and II clinical trials.” Unfortunately, Fla-
vopiridol failed to achieve clinical efficacy in these
early studies; however, much was learnt about the
potential limitations of CDK inhibitors in terms of
target specificity, development of resistance, activation
of compensatory mechanisms, and poor pharmaco-
kinetics. As well as giving rise to a new generation
of more specific CDK inhibitors, the lessons learned
from the development of Flavopiridol have reignited
interest in the compound as more advantageous
therapeutic strategies are devised.

A. Target Specificity

First-generation ATP-competitive CDK inhibitors,
such as Flavopiridol, olomoucine, and roscovitine,
were relatively nonspecific, inhibiting numerous
CDKs with varying selectivity. In the case of Flavo-

piridol, early clinical trials were carried out in patients
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with multiple myeloma, melanoma, and endometrial
adenocarcinoma.*® Only modest responses were
observed, and treatment was associated with severe
side effects such as diarrhea and myelosuppression.
It was hypothesized that the associated toxicity was
due to the agent’s significant affinity for CDKs 7, 8,
9,10, and 11, a distinct subfamily of CDKs whose
tunction is primarily to promote transcription. Inac-
tivation of these transcriptional CDKs has a global
impact, primarily reducing the accumulation of
RNA transcripts that have a rapid turnover, such as
those that encode cell cycle regulators, NFkB- and
p53-responsive transcripts, and anti-apoptotic fac-
tors, thus inducing cell death.** 'This detrimental
effect on normal cells prevented the administration
of a therapeutic dose, thus limiting the benefit that
could be achieved. Interestingly, subsequent clinical
trials have been completed using Flavopiridol in
hematological malignancies with great success, as
the survival of malignant hematopoietic cells is
dependent on the continuous expression of anti-
apoptotic proteins.’*>! These studies highlighted
how crucial it was to define which specific CDKs
were required to drive the proliferation of cancer cells
in order to eliminate undesired toxicities in normal
cells. Although the close sequence and structural
conservation between different members of the CDK
family, particularly in the kinase domain, makes it
challenging to develop compounds with specificity
for a single CDK, second-generation compounds
with improved selectivity for CDKs known to play
a prominent role in tumorigenesis were subsequently
developed, and many are currently undergoing
clinical testing (Table 1). These include the selec-
tive CDK4/6 inhibitor PDD0332991, which causes
cultured cells to arrest in G, phase and inhibits the
proliferation of xenografts of RB-positive breast,
ovarian, lung, colon, and prostate cancer cell lines,
and glioblastoma, leukemia, myeloma, and mantle
cell lymphoma (IMCL) cell lines.”>7 It is currently
undergoing phase II clinical testing as a single agent
for advanced or metastatic liposarcoma, RB-positive
glioblastoma, liver cancer, refractory solid tumors,
and non-small cell lung cancer (NSCLC), and as
a combination therapy for multiple myeloma (with
bortezomib and dexamethasone) and hormone recep-
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tor positive advanced breast cancer (in combination
with letrozole) (see Table 1). P276-00 is another
promising inhibitor that is highly specific to CDK4.
It has been used iz vitro to demonstrate a significant
anti-proliferative effect in numerous human cancer
cell lines, including MCF-7 breast cancer cells and
H-460 lung cancer cells.*® Several phase I/II clinical
studies with P276-00 are underway (Table 1) includ-
ing its assessment as a combination therapy with
gemcitabine in advanced pancreatic cancer patients,
with radiation in subjects with advanced head and
neck cancer, and with gemcitabine or carboplatin in
patients with metastatic triple negative breast cancer.
It is also being tested as a single agent in patients
with refractory multiple myeloma, cyclin D-positive
malignant melanoma, and relapsed and/or refractory

mantle cell lymphoma in phase II studies (Table 1).
B. Pharmacokinetics

As with other therapies that act at specific phases of
the cell cycle, the pharmacokinetics of CDK inhibi-
tors provides a challenge. The heterogeneity of cell
populations iz vive ensures that not all cells will be
actively progressing through the cell cycle at any one
time, and those that are “in cycle” will be distributed
throughout the cell cycle. CDKs are typically active
during only a limited window of the cell cycle, and
therefore, unless an exogenous CDK inhibitor is pres-
ent at inhibitory concentrations for a time exceeding
the entire duration of a cell cycle, many cells may not
pass through the vulnerable portion of the cell cycle.
Although some compounds with cell cycle phase-
specific actions are in routine clinical use (e.g., the
antiestrogen tamoxifen, which acts during a specific
window within G; phase, and gemcitabine, which
blocks DNA synthesis),>° the high concentration
of CDK inhibitor required to induce a therapeuti-
cally effective dose over such a long period of time
increases the likelihood of nonspecific inhibition of
other kinases, potentially contributing to dose-limiting
toxicity and in turn reducing the therapeutic benefit
achieved. This limitation is likely to be reduced by the
improved selectivity of second-generation compounds;
however, it is evident that the dosing regimen with
which a CDK inhibitor is administered is critical to
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achieve the greatest therapeutic benefit. For example,
clinical trials with Flavopiridol administered as pro-
longed infusions were largely ineffective in many set-
tings; however, recent clinical trials administering the
drug as a 30-minute bolus dose followed by a 4-hour
infusion produced sustained micromolar concentra-
tions for several hours, allowing a 41% response rate
in 22 assessable leukemia patients.®!

C. Resistance and Compensatory
Mechanisms

Despite the promise second generation CDK inhibi-
tors have shown as anti-cancer agents in both preclini-
cal and clinical studies, it has become increasingly
apparent that the effectiveness of such therapies is
dictated by genetic context and by the activation
status of specific cellular pathways. For example,
early studies showed that sensitivity to PDD0332991,
the CDK4/6 inhibitor, in various xenograft models
was dependent on the presence of functional RB
protein.’?> However, it has since been shown even
RB competent cells display a range of sensitivities
to the inhibitor due to the varied expression of other
key components of the cell cycle.>57:62-64

In a study in which 40 human ovarian cancer
cell lines were treated with PID0332991, responses
were considerably varied, with approximately half
demonstrating high sensitivity to CDK4/6 inhibi-
tion. Of the 18 cell lines that were insensitive to
the anti-proliferative effect of PID0332991, 9 were
RB proficient, and in 2 of the 22 sensitive cell lines,
RB was deleted; thus it was clear that RB status
alone was not an accurate predictor of response. It
was later determined that RB-competent cell lines
with low pl6 expression were most responsive to
PD0332991.°7 This is concordant with other studies
in which high levels of p16 (the endogenous inhibitor
tor CDK4/6 activity) was associated with acquired
independence from CDK4/6 signaling, and thus
insensitivity to CDK4/6 inhibition.®*7 In addition,
a gain of cyclin E1 or cyclin D1 gene copy number,
or the presence of p53 mutations with subsequent
low expression of p21, could also confer resistance to
CDK4/6 inhibition in ovarian cancer cells.”” Within
a cohort of 292 ovarian cancer patient samples,
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92 were RB proficient with low p16 expression.’’
This suggests that only just over a third of ovarian
cancer patients would benefit from CDK4/6 inhibi-
tion, despite normal RB expression in 96% of these
tumors,”’ indicating that the use of PD0332991,
and related therapeutic agents, should be directed
selectively to avoid such resistance mechanisms.

Acquired resistance to PD0332991 has also been
reported in acute myeloid leukemia (AIMIL) and breast
cancer cell lines, with emerging populations featur-
ing elevated CDK2 protein levels and attenuation
of endogenous CDK2 inhibitors. The resistant cells
also featured increased levels of E2F-target genes,
cyclins A and E, which are essential for CDK2
tunction, thus facilitating CDK4/6 independence
and a proliferative cell cycle driven by CDK2.63-64

Numerous knockdown and knockout (KO)
experiments have provided valuable insights into the
specific roles of individual CDKs and highlighted
redundancy issues and compensatory mechanisms
that could represent a key determinant of therapeutic
failure.%® 'The mammalian cell cycle can progress in
the absence of one or more non-mitotic CDKs,*%71
and strikingly, triple ablation of CDK2, 4, and 6
can be compensated by CDK1, raising doubts over
inhibition of these CDKs as a therapeutic strategy.”?
However, the relevance of such KO models to the
pharmacological inhibition of individual CDKs can
be questioned. One major issue arises from the dif-
ferences in mechanism of action: while the target
CDK s absent in KO models, CDK inhibitors impair
kinase activity but not the formation of complexes
between the target CDK and cognate cyclins, vari-
ous substrates, or inhibitors. Furthermore, because
KO models are deficient in the gene(s) of interest
through development, there is potentially a greater
opportunity to develop compensatory mechanisms.
Finally, chemical intervention is generally less specific
than the genetic depletion of a specific CDK.

D. CDK Inhibitors: Recent Advances
1. Combination Therapies

Recent data suggest that the future for CDK
inhibitors in cancer therapy maybe in combinatory
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strategies. Both preclinical studies and clinical trials
have demonstrated that CDK inhibitors can act in
synergy with cytotoxic drugs, suggesting that CDK
inhibitors work better when cells are synchronized
or arrested in specific cell phases.* For example,
PHA-848125, a second-generation CDK inhibitor,
showed anti-tumor effects in several cancer models,
including prostate, pancreas, and lung, as well as
showing more than an additive effect when used in
combination with docetaxel and bevacizumab.”® This
idea is supported by encouraging data derived from
a phase II study of AML, where the combination of
cytarabine and mitoxantrone with Flavopiridol gave
a complete response in 75% of patients.”

The potential for CDK inhibitors to reverse
resistance to radiotherapy and chemotherapy is also
being investigated. SN'S-032, another second-gener-
ation CDK2/7/9 inhibitor, which has recently been
shown to exhibit significant single-agent activity in
primary AML cells, as well as remarkable synergism
with cytarabine,” sensitizes radiotherapy-resistant
NSCLC cells to ionizing radiation.”®

CDK inhibitors may also be used successfully
to enhance the efficiency of other drugs, such as
the proteasome inhibitor bortezomib or dexametha-
sone. Co-treatment with the CDK4/6 inhibitor
PD0332991 enhances multiple myeloma cell death,
and is currently undergoing phase I and II clinical
trials.””~7® This CDK inhibitor also enhanced the
activity of a FLI'3 inhibitor in AML cell lines that
expressed a mutant form of the FLI3 receptor
tyrosine kinase,® and acted synergistically with the
BCR-ABL kinase inhibitor imatinib in leukemia
cell lines.” In addition, PID0332991 demonstrated
synergy with the anti-estrogen tamoxifen and the
HER2-targeted therapy Trastuzumab in ER-positive
breast cancer cell lines, and was also effective in anti-
estrogen-resistant cell lines.> A phase I/11 trial using
PD0332991 in combination with the anti-estrogen
letrozole is in progress (Table 1).

2. CDK Inhibitors with Multiple Kinase
Targets

Recent reports have described CDK inhibitors with
activity against additional kinase targets that may
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serve to enhance anti-tumor activity. These include
TGO02, an inhibitor of CDK 1, 2, 7, 9, and JAK2,
and FLI'3, which inhibits the proliferation of a broad
range of tumor cell lines, including primary cultures
of progenitor cells derived from AML and polycy-
themia vera patients. It also caused tumor regres-
sion in murine models of leukemia and is currently
undergoing phase I trials (Table 1).80 ZK-304709,
which inhibits VEGFR 1-3 and PDGFR} as well as
CDK 1,2, 4,7,and 9, demonstrated superior efficacy
compared to standard chemotherapeutic compounds
both in subcutaneous human tumor xenografts and
orthotopic human pancreatic carcinoma models,®! and
is currently being assessed for tolerability in phase I
trials.#2 RGB-286638 also inhibits other kinases in
addition to CDKs, including several receptor (e.g.,
FLT1, FLT3, FLT4) and nonreceptor (e.g., Abl,
Jak, c-Src family members) tyrosine kinases as well
as serine/threonine kinases such as AMPK, GSK3,
PIM1,HIPK1-3,and MAPK.# Increased survival and
tumor regression were observed in several preclinical
models of both solid and hematological malignancies
tollowing RGB-286638 treatment, and as a result, it
was due to undergo phase I clinical evaluation in late
2011, however it was withdrawn prior to enrollment
(Table 1). JNJ-7706621, a CDK inhibitor that also
inhibits aurora kinases, selectively blocked prolifera-
tion of tumor cells of various origins iz wvitro, as well
as in xenograft models; however, to date, it has not
been assessed clinically.®

3. Non-ATP-Competitive CDK Inhibitors

The off-target effects and subsequent dose limitations
associated with ATP-competitive inhibitors have led
to interest in designing non-ATP-competitive CDK
inhibitor compounds,® for example inhibitors that
target kinase substrates and regulatory binding sites.
Examples of these are summarized below.

a. Inhibitors of the Cyclin Binding Groove

Cyclins contain an exposed hydrophobic groove when
bound in an active complex, acting as a recruitment
point for numerous substrates and endogenous inhibi-
tory proteins. Cell permeable peptides containing

the appropriate Arg/Lys-X-Leu (“RXL” or “KXL")
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binding motif have been reported to induce apoptosis
in tumor cells and inhibit tumor growth in vive.8-7

b. Inhibitors of CDK-Cyclin Association

In order to inhibit the active protein-protein com-
plexes being formed between different cyclins and
CDKs, peptides, such as NBI1 (an all d-amino acid
hexapeptide) have been developed to selectively bind
to cyclin A and prevent the kinase activity of the
CDK2-cyclin A complex. A cell-permeable derivative
of NBI1 induces apoptosis and inhibits proliferation
of tumor cell lines, and thus the NBI1-binding site on
cyclin A may represent a new target for the selective

inhibition of CDK2 activity.®

c. Inhibitor Derivatives from CDK Substrates
Derivatives from the inhibitory CDK substrates p53
and pRB have been used to block CDK2 activity
in vitro and in vivo. For example, CIP is a 20-mer
peptide designed to mimic p53 that prevents CDK2-
mediated p53 phosphorylation and induces cell death
in A375 melanoma cells.® Spa310 (derived from
the spacer domain of pRb2/p130) is able to inhibit
the activity of CDK2 and induce cell cycle arrest
at G,-G; in NIH3T3 cells and also inhibit tumor
development in an A549 xenograft mouse model
by mimicking RBL2 tumor suppressor function.?
Although these routes to CDK inhibition show
promise in preclinical models, much more extensive
testing in experimental models will be required before
they reach clinical testing. In addition, the signifi-
cant challenges in drug delivery for peptide-based

therapeutics will need to be addressed.”>2
4. Patient Selection

Technologies that allow genomewide transcriptome,
methylome, and sequencing analyses of cancer have
resulted in unprecedented insights into the hetero-
geneity of the disease. It has become apparent that
cancers that might seem to be similar on the basis
of tissue of origin and histological appearance can,
in fact, be very different at the molecular level.®
Consequently, testing novel targeted therapeutic
strategies in unselected patients may underestimate

the efficacy that could be achieved in appropriately
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selected subgroups. Although many trials are still
being carried out in unselected patient cohorts,
clinical trials in which patients are selected on the
basis of a common somatic aberration that can be
targeted are becoming more prevalent and achiev-
ing greater success. For example, clinical trials in
the development of Trastuzumab (Herceptin®), the
therapeutic monoclonal antibody against HER2,
recruited only those patients with overexpression/
amplification of the target molecule, which substan-
tially decreased the number of patients required to
demonstrate efficacy, accelerating its implementation
and subsequent extension to gastric cancer.”* This
rational design strategy is slowly being implemented
in CDK inhibitor trials. For example, P276-00, the
potent inhibitor of CDK4, is in phase II trials in
subjects with malignant melanoma whose tumors are
positive for cyclin D1, i.e., the cyclin that activates
CDK4. Also, the CDK4/6 inhibitor PD0332991 is in
phase II trials in patients with recurrent RB-positive
glioblastoma (Table 1). The advent of these “tailored”
clinical trials will no doubt give these compounds a
better chance of success and, more importantly, the
patients receiving the agents a higher likelihood
of response. However, although some progress has
been made in identifying biomarkers of response
to CDK inhibition, more comprehensive signatures
of response are likely to be required to avoid drug
resistance and clinical failure.

IV. INHIBITORS OF MITOTIC KINASES

Cells are more sensitive to apoptotic cell death dur-
ing mitosis than in any other phase of the cell cycle.
Indeed, some commonly used first-line therapies (i.e.,
taxanes and vinca alkaloids) are anti-mitotic agents.
'These drugs act as microtubule toxins and so activate
the spindle assembly checkpoint (SAC), causing
prolonged mitosis and subsequent cell death.*%
However, because microtubules have vital functions
in both dividing and nondividing cells, microtubule
toxins cause a range of side effects. New mitotic
targets that specifically block spindle assembly in
dividing cells have been intensively pursued over
recent years, with aurora kinases and PLKs becoming
the lead targets.?>>* Numerous inhibitors are now in
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clinical development and offer promising therapeutic
strategies for the near future (Tables 2 and 3).

'The three aurora kinases (aurora kinases A, B, and
C) are essential to ensure error-free cell division, and
their overexpression appears to be intimately linked
to centrosome amplification, malignant transforma-
tion, and resistance to microtubule poisons.” Aurora
A localizes to centrosomes and spindle poles during
mitosis and is overexpressed in many epithelial can-
cers.32369 Inhibition of aurora A by RNA interfer-
ence or by small-molecule inhibitors causes SAC-
induced mitotic arrest and the formation of unipolar
spindles, which can eventually lead to apoptosis.”
Aurora B is a chromosomal passenger implicated
in SAC whose localization to the mitotic apparatus
varies depending upon the stage of the cell cycle.”
It too is overexpressed in various tumors, including
those of the breast, colon, rectum, kidney, lung, and
prostate.”® Although Aurora B overexpression alone
cannot induce malignant transformation of cells, its
overexpression is involved in Ras-mediated trans-
formation and is correlated with increased genomic
instability.”-1% Inhibition of aurora B activity causes
abrogation of the SAC, so that cells enter anaphase
despite the presence of misaligned chromosomes.
Cytokinesis also fails, leading to cells in the G1
phase that have four, rather than two, copies of each
chromosome. These cells continue to grow, acquire
enlarged polyploid nuclei, and eventually undergo
apoptosis or senescence.”” Aurora C is structurally
and functionally related to aurora B, although its
expression is restricted to certain cell lineages.”

Although the impact of off-target effects and
the prevalence of drug resistance have yet to be
tully explored in preclinical models, there are many
clinical trials underway using inhibitors of aurora
kinases (both pan and specific inhibitors), which are
summarized in Table 2. Despite many phase I trials
being terminated following concerns over efficacy and
safety, preliminary data would suggest that aurora
inhibitors are generally well tolerated.’® Further-
more, in a recent phase I/II trial testing AZD1152,
a highly selective aurora B inhibitor, 25% of patients
with advanced AML demonstrated a hematological
response with manageable toxicity, highlighting their
potential use as therapeutics.!%?
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'The most well characterized member of the
mammalian PLK family is PLK1. PLK1 specifically
localizes to centrosomes, the spindle midzone, and
the post-mitotic bridge, and it participates in both
mitotic entry and mitotic progression.'® Constitutive
high expression of PLK1 is associated with numer-
ous types of solid tumors.?”* Depletion of PLK1
by RNA interference results in metaphase arrest
and formation of abnormal chromatin structures.
Knockdown of PLK1 also reduces cell survival and
elevates drug sensitivity of tumor, but not normal,
cells.104+105 Four other PLKs (PLK2-5) have been
identified, though their roles in tumorigenesis have
not been well classified.

Clinical trials underway using inhibitors of PLK1
are summarized in Table 3. As with the aurora kinase
inhibitors, most PLK1 inhibitors are in phase I trials
and their clinical efficacy remains unclear. However,
the results from phase II testing of BI2536 in patients
with various solid tumors have recently been pub-
lished, each describing modest responses at best, in
contrast to promising preclinical studies.’® Further
clinical evaluation of PLK inhibitors is therefore
required to determine how they will compare with
current antimitotic agents.

V. NOVEL CELL CYCLE KINASE TARGETS

In addition to CDKs, aurora kinases, and PLK1, other
cell cycle kinases that have recently been identified as
deregulated in cancer are being explored as potential
new therapeutic targets.

Weel kinase regulates M-phase entry by inacti-
vating CDK1 through the phosphorylation of Y15,
preventing the formation of the cyclin B-CDK1
complex.” The newly identified Weel inhibitor
MK-1775 potently sensitizes p53-defective human
tumor cells derived from lung, breast, and prostate
cancers to radiation at nanomolar concentrations,!%8
and enhances the anti-tumor efficacy of various
DNA -damaging agents in p53-deficient human colon
cancer cells.’® This sensitization appears to involve
a drug-induced, premature acceleration of G2 phase
cells into mitosis. Such cells harbor unrepaired DNA
lesions that lead to abnormal cell divisions and cell
death. These findings support the continued phase 1/
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IT clinical assessments of MK-1775 in combination
with DNA-damaging agents including radiation
in ovarian, cervical and other solid tumors (http://
clinicaltrials.gov).

Haspin is a protein kinase that specifically phos-
phorylates histone H3 at threonine 3,a process critical
to mitotic progression.!? Small-molecule inhibitors
of Haspin, such as CHR-6494, have recently been
identified and possess powerful anti-tumor activity
in vitro, ex vivo, and in vive but have yet to be tested
in a clinical setting. 11

Cdc7 is a serine-threonine kinase that is nec-
essary to initiate S phase.!’? Although originally
discovered in budding yeast, Cdc7 and its protein
regulator Dbf4 are overexpressed in human cancer
cell lines and in many primary tumors compared
with matched normal tissues.!3 Inhibition of Cdc7
in cancer cells by RNAIi inhibits S-phase progres-
sion, causing p53-independent cell death.!**11° Two
inhibitors of Cdc7 activity are undergoing clinical
trials, BMS-863233 and NMS-1116354 (http://
clinicaltrials.gov), results for which have yet to be
released.

VI. CONCLUSION

Despite promising results from targeting cell cycle
kinases in preclinical models, further experimental
and clinical data are necessary before they can be
considered for routine clinical application. Areas
of unmet need include: understanding the role of
individual CDK activities in specific tumor subtypes;
rational drug design that takes into account the
pharmacokinetic complexities of targeting the cell
cycle machinery; and clinically useful predictors of
therapeutic benefit to ensure that drugs are used in
the appropriate patient subgroups and if relevant, used
in appropriate combinations with other compounds
to provide the best therapeutic strategies. The latest
generation of cell cycle kinase inhibitors suggests
that there is the potential for eventual translation
into the clinic, although much work remains to be
done to determine which combination of CDKs or
CDKs plus other kinases will prove most effective
as targets for cancer therapy, and how to best match

specific cell cycle kinase inhibitors to the CDK/tyro-
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sine kinase signature of a specific cancer, or indeed
a specific patient profile.
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