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SUMMARY

Secondary diversification of the B cell repertoire by
immunoglobulin gene somatic hypermutation in the
germinal center (GC) is essential for providing the
high-affinity antibody specificities required for long-
term humoral immunity. While the risk to self-toler-
ance posed by inadvertent generation of self-reac-
tive GC B cells has long been recognized, it has not
previously been possible to identify such cells and
study their fate. In the current study, self-reactive B
cells generated de novo in the GC failed to survive
when their target self-antigen was either expressed
ubiquitously or specifically in cells proximal to the
GC microenvironment. By contrast, GC B cells that
recognized rare or tissue-specific self-antigens
were not eliminated, and could instead undergo
positive selection by cross-reactive foreign antigen
and produce plasma cells secreting high-affinity
autoantibodies. These findings demonstrate the
incomplete nature of GC self-tolerance and may
explain the frequent association of cross-reactive,
organ-specific autoantibodies with postinfectious
autoimmune disease.

INTRODUCTION

Diversification of T and B lymphocyte antigen receptors is funda-

mental to immunity. In the case of B cell antigen receptors

(BCRs), clonal diversification of the antigen-combining sites

occurs in two phases. The first takes place during early B cell

development when unique combinations of V, (D), and J DNA

segments are assembled to form the immunoglobulin (Ig) heavy

and light chain variable region genes. The products of these

genes combine to define the distinct antigen-binding capabilities

of the BCRs expressed on each cell within the primary B cell

repertoire. Depending on their BCR binding-specificity, naive B

cells may recognize and be activated by structures associated

with foreign cells or molecules. Collaboration with antigen-acti-

vated CD4+ T helper (Th) cells follows, leading to the proliferative
I

expansion of activated B cells followed by their differentiation

into either terminally differentiated antibody-secreting plasma

cells or germinal center (GC) B cells (Goodnow et al., 2010; Ma-

cLennan, 1994, 2003).

GCs are areas of intense B cell proliferation that form around

the follicular dendritic cell (FDC) networks within the follicles of

secondary lymphoid tissues and also contain specialized T follic-

ular helper (Tfh) cells (Allen and Cyster, 2008; King et al., 2008). It

is typically within GCs that the second phase of BCR diversifica-

tion occurs via somatic hypermutation (SHM), the introduction of

point mutations into the Ig heavy and light chain variable region

coding exons. Rare GC B cell clones that acquire increased

affinity for foreign antigen undergo positive selection, whereby

they preferentially survive, proliferate, and ultimately undergo

plasma cell differentiation. This process of ‘‘affinity maturation’’

is driven by competition between GC B cells for foreign antigen

presented in immune complexes on the FDC surface and the

subsequent delivery of cognate help from TFH cells (Allen and

Cyster, 2008; Goodnow et al., 2010; Tarlinton, 2008; Victora

et al., 2010). Thus the secondary diversification of BCRs coupled

with affinity maturation in GCs provides the high-affinity serum

antibodies that mediate long-term humoral immunity and form

the basis of most successful vaccines (Plotkin et al., 2008).

The essentially random nature of the genetic mechanisms

responsible for generating antigen receptor diversity means

that the production of lymphocyte clones capable of recognizing

components of host tissues (i.e., self-antigens) is inevitable.

Indeed, up to 75% of newly generated bone marrow B cells

express BCRs that bind to self-antigens (Wardemann et al.,

2003). In order to benefit from lymphocyte diversity, therefore,

the immune system has evolved a parallel series of ‘‘self-toler-

ance’’ mechanisms through which the participation of self-reac-

tive lymphocytes in destructive autoimmune responses is largely

prevented. In the case of the primary B cell repertoire, the self-

tolerance mechanisms responsible for eliminating, editing, or

silencing self-reactive B cells have been extensively character-

ized (Goodnow, 1992; Nemazee, 1993; Nossal, 1994). This has

been achieved largely through the application of genetically

modified mouse models that have allowed BCR specificities

within the primary repertoire to be directed toward a natural or

transgene-encoded self-antigen. By contrast, the dynamic and

complex nature of GCs has so far thwarted attempts to identify

and study self-reactive B cells generated during the formation
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of the secondary repertoire by SHM. This has greatly limited

insights into how self-tolerance is enforced in the GC and

how residual self-reactive GC B cells may contribute to

autoimmunity.

The potential for B cells to acquire self-reactivity via SHM has

been verified both in vitro (Casson and Manser, 1995; Diamond

and Scharff, 1984) and in vivo (Olee et al., 1992; Shlomchik

et al., 1990; Shlomchik et al., 1987; Tiller et al., 2007). The

demonstration that somatically mutated, pathogenic autoanti-

bodies can emerge from the GC indicates that self-tolerance

within the secondary B cell repertoire is not absolute. Neverthe-

less, several studies suggest that self-reactive GCB cells may be

eliminated following interaction with self-antigen. These include

experiments in which the injection of a bolus of exogenous

antigen has resulted in widespread apoptosis of antigen-specific

GC B cells (Han et al., 1995; Pulendran et al., 1995; Shokat and

Goodnow, 1995) and a model in which class-switched IgG2a+ B

cells are eliminated by a transgenically encoded anti-IgG2a

‘‘superantigen’’ (Aı̈t-Azzouzene et al., 2010). Evidence also exists

that naive B cells that have some self-reactivity can emerge from

the GC having lost self-reactivity as a result of SHM (Casson and

Manser, 1995; Guay et al., 2004; Notidis et al., 2002). Although it

would appear that self-reactive GC B cells may be inactivated

under some circumstances, the current absence of a model

with which to identify bona fide self-reactive B cells generated

within the GC has made it difficult to determine how these cells

are inactivated and under what circumstances this does or

does not occur.

Here we have described a new experimental model that

allows the precise identification and analysis of B cells

acquiring self-reactivity in the GC. In particular, this model

examines those GC B cells that represent the greatest autoim-

mune threat; that is, the self-reactive clones that acquire self-

reactivity via SHM but retain the potential to undergo positive

selection by foreign antigen. Selection against such self-reac-

tive clones was found to occur but to be critically dependent

on the concentration and location of self-antigen expression.

Moreover, the data indicate that competition for self versus

foreign antigen in the GC microenvironment is fundamental

in determining the fate of self-reactive specificities generated

by SHM.

RESULTS

A Model for Investigating Self-Reactive GC B Cells:
HEL3X and HEL4X as Homologous Foreign and
Self-Antigens
The first requirement for an experimental model to identify and

study self-reactive GC B cells was a population of B cells that

possessed a defined and well-characterized BCR specificity.

In addition, a pair of homologous foreign and self antigens

were required such that: (1) the foreign but not the self-antigen

binds to the BCR (i.e., naive B cells are not self-reactive) and

(2) somatically mutated GC B cells gaining increased affinity

for the foreign-antigen also acquire cross-reactivity with the

self-antigen (see Figure S1A available online).

As a basis for this model, B cells derived from the SWHEL line of

Ig transgenic mice were utilized. B cells from SWHEL mice

express BCRs with the specificity of the HyHEL10 monoclonal
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antibody and thus bind to the foreign protein hen-egg lysozyme

(HEL) with high affinity (Padlan et al., 1989; Phan et al., 2003).

Because the VDJ exon of HyHEL10 is targeted to the endoge-

nous Ig heavy chain locus, anti-HEL SWHEL B cells undergo

normal Ig class switching and SHM (Phan et al., 2006). To facil-

itate studies of affinity maturation using SWHEL B cells, we previ-

ously developed HEL3X, a recombinant form of HEL with three

amino-acid substitutions in the HyHEL10 binding site (Paus

et al., 2006) (Figure 1A). The binding of HEL3X to HyHEL10 is of

intermediate affinity (Ka = 1.1 3 107 M�1) and is readily detect-

able by direct ELISA (Figure 1C). Despite its reduced affinity for

the SWHEL BCR, HEL3X coupled to sheep red blood cells

(HEL3X-SRBC) elicits a strong in vivo proliferative response

from donor (CD45.1 congenic) SWHEL B cells upon adoptive

transfer into wild-type (WT) recipient mice (Figure 1E). This

response includes the formation of GCs by donor SWHEL B cells

in which somatically mutated, high-affinity, anti-HEL3X clones

accumulate due to positive selection (Phan et al., 2006). The

great majority of these affinity-matured SWHEL GC B cells carry

a canonical Y53D substitution in the Ig heavy chain variable

region, which results in a >100-fold increase in the affinity of

HyHEL10 for HEL3X (Phan et al., 2006).

To develop a self-antigen to use in partnership with HEL3X

foreign antigen, we introduced an additional amino acid substi-

tution (K97R) into the HyHEL10 binding site of HEL3X. The result-

ing recombinant protein was designated HEL4X (Figure 1B).

Although HEL4X maintained a quantifiable affinity for HyHEL10

(Ka = 2.3 3 105 M�1), the very low affinity of this interaction

made it undetectable by ELISA (Figure 1C). Moreover, HEL4X

proved incapable of triggering a measurable in vitro response

from SWHEL B cells (Figures S1B–3E) and could not elicit

a response from SWHEL B cells in vivo when conjugated to

SRBCs (Figure 1E). However, HEL4X was found to bind strongly

(Ka = 2.83 107 M�1) to Y53D-substituted HyHEL10 (Figures 1D).

Thus HEL4X does not have a biologically relevant interaction with

the initial SWHEL BCR but does bind to the Y53D mutated form

selected during the GC response of SWHEL B cells to HEL3X-

SRBC.

Transgenic Mice Expressing Membrane-Bound HEL4X

as a Self-Antigen
To establish a system in which HEL4X was expressed as a bona

fide self-antigen, a line of mice was required that expressed

HEL4X from a stably integrated transgene. To this end, mice

were produced carrying a cDNA encoding a membrane-bound

form of HEL4X (mHEL4X) driven by a ubiquitously expressed

promoter (UBC) and introduced as a single copy into the

ROSA26 locus (Figure 2A; Figure S2). Two separate lines of

mice were derived in which a polyadenylation site flanked by

loxP recombination sequences was either present or absent

from between the promoter and cDNA sequences (Figure 2A).

In mice lacking the polyadenylation site (mHEL4X Tg mice),

mHEL4X self-antigen was expressed in all tissues examined

(Figure 2B). Flow cytometric analysis demonstrated the pres-

ence of mHEL4X on all tested hematopoietic cell types from

mHEL4X Tg mice (Figure 2C). Immunofluorescence histology

also indicated that mHEL4X self-antigen was expressed

throughout the spleens of these mice, including in GCs

(Figure 2D).



Figure 1. Production of HEL4X and Demon-

stration of Its Binding to Y53D-Substituted

but Not WT HyHEL10

(A and B) Space filling models of HEL3X (A)

and HEL4X (B). Residues involved in HyHEL10

binding are yellow with substitutions common to

HEL3X and HEL4X in red and the substitution

unique to HEL4X (K97R) in blue.

(C and D) ELISA of the binding of recombinant

IgG1 mAbs HyHEL10 (C) and HyHEL10Y53D (D) to

HEL3X (red) and HEL4X (blue).

(E) Flow cytometry of spleen cells from WT

(CD45.2+) recipient mice 5 days after injection with

CD45.1 congenic SWHEL B cells and the indicated

SRBC conjugate. SWHEL B cells express the WT

form of HyHEL10 as their BCR and proliferate in

response to HEL3X-SRBC but not unconjugated

SRBC or HEL4X-SRBC. Plots are representative of

three independent experiments and comprise

concatenated data from two recipient mice.
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Ubiquitous, High Expression of Self-Antigen Prevents
Positive Selection of Cross-Reactive GC B Cells
To determine the fate of GC B cells that cross-react with a ubiq-

uitous self-antigen, donor SWHEL B cells were injected into

mHEL4X Tg or control WT recipient mice and challenged with

HEL3X-SRBC foreign antigen. Under these circumstances,

IgG1 is the major class switched isotype expressed by respond-

ing SWHEL B cells (Chan et al., 2009). Flow cytometric analysis of

donor SWHEL GC B cells (CD45.1+, B220+, CD38low) in WT recip-

ients revealed that clones with increased affinity for HEL3X accu-

mulated between days 5 and 14 of the response (Figure 3A). As

predicted by the binding of Y53D-substituted HyHEL10 to HEL4X

(Figure 1D), SWHEL GC B cells undergoing affinity maturation to

HEL3X foreign antigen in WT recipients also developed cross-

reactivity with HEL4X by day 14 of their response to HEL3X-

SRBC (Figure 3B).

In mHEL4X Tg recipient mice, the response of donor SWHEL B

cells to HEL3X-SRBC generated normal frequencies of both

IgG1+ and IgG1� GC B cells on day 5 (Figure 3C). By day 14,

affinity maturation of SWHEL GC B cells to HEL3X foreign antigen
Immunity 37, 893–904, N
was apparent in mHEL4X Tg recipients

(Figure 3C). In contrast to WT recipients,

however, development of cross-reactivity

with HEL4X was absent (Figure 3D). Thus,

while affinity maturation of SWHEL GC B

cells in response to HEL3X foreign antigen

could operate in mHEL4X Tg recipients,

HEL3X-binding clones that cross-reacted

with mHEL4X self-antigen were appar-

ently prevented from undergoing positive

selection. Immunohistology analysis

confirmed that the selection of GC

phenotype B cells occurred within GC

structures in spleens from both recipient

genotypes (Figure S3).

To obtain a clearer picture of how

mHEL4X self-antigen expression was

shaping the GC response to HEL3X-
SRBC, SHM analysis was performed by sequencing the Ig heavy

chain variable region exon from single SWHEL GC B cells isolated

on days 14 and 35. The most strongly selected mutations were

those resulting in the Y53D and Y58F substitutions (Figure 3E).

As expected, GC B cell clones carrying the Y53D substitution

dominated in WT recipients. However, Y53D+ clones were virtu-

ally absent fromGCB cells in mHEL4X Tgmice (Figure 3E, Tables

S1 and S2). The Y58F substitution, by contrast, was selected in

GCs from both WT and mHEL4X Tg recipients. As a result, GC

responses in WT recipients were dominated initially by

Y53D+,Y58F� and subsequently by Y53D+,Y58F+ clones,

whereas GC responses in mHEL4X Tg recipients primarily

selected Y53D�,Y58F+ B cells (Figure 3F).

Analysis of recombinant HyHEL10 IgG1 antibodies carrying

the Y53D and/or Y58F substitutions revealed that each bound

HEL3X foreign antigen with increased affinity compared to WT

HyHEL10 (Figures 4A and 4B). On the other hand, binding to

HEL4X in ELISA was apparent for HyHEL10 molecules carrying

Y53D (with or without Y58F) but not when Y58F was present

alone (Figure 4B). This was consistent with the relative
ovember 16, 2012 ª2012 Elsevier Inc. 895



Figure 2. Construction of mHEL4X Tg Mice

and Analysis of mHEL4X Expression

(A) Diagrammatic representation of the flox-

mHEL4X transgene and derivation of the mHEL4X

transgene with Cre. UBC, human ubiquitin C

promoter; pA, polyadenylation sites; triangles,

loxP sites; oval, residual FRT site (see Figure S2).

(B) Immunoprecipitation and protein immunoblot

analysis of mHEL4X expression in tissues from WT

(–) and mHEL4X Tg (+) mice.

(C) Expression of mHEL4X on spleen cell subpop-

ulations from mHEL4X Tg mice (open histograms)

revealed by staining with HyHEL9. Grey histo-

grams represent WT controls.

(D) Fluorescence immunohistology of spleen

sections from WT (top panels) and mHEL4X Tg

(bottom panels) mice. B cell follicles (Fo, anti-IgD,

blue), GCs (PNA, red), and mHEL4X expression

(anti-HEL, green) are shown. Data are represen-

tative of spleens from six individual mice of each

genotype from two independent experiments.
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affinities for HEL4X measured using Biacore analysis

(Y53D+,Y58F+ Ka = 1.1 3 108 M�1; Y53D+,Y58F� Ka = 2.8 3

107 M�1; Y53D�,Y58F+ Ka = 8.9 3 105 M�1. Figure 4A; Fig-

ure S4). Serum IgG1 antibody responses to HEL3X-SRBC in

recipient mice, which we have shown previously to be derived

exclusively from donor SWHEL B cells in this experimental

system (Phan et al., 2005), were as predicted by specificities

detected in the GC. Thus, whereas antibodies binding HEL3X

foreign antigen were generated in both WT and mHEL4X Tg

recipients, large amounts of anti-HEL4X IgG1 were only de-

tected in WT recipients (Figure 4C). These data demonstrate

that self-reactive anti-HEL4X (Y53D+) GC B cells are effectively

prevented from undergoing positive selection in mHEL4X Tg

mice, despite their high-affinity cross-reactivity with HEL3X

foreign antigen (Ka > 3 3 109 M�1, Figure 4A). However,

clones that instead acquired increased affinity for HEL3X

foreign antigen while avoiding high-affinity cross-reactivity

with HEL4X self antigen (e.g., Y53D�,Y58F+) escaped negative

selection, underwent normal positive selection, and contrib-

uted to an affinity-matured antibody response against the

HEL3X foreign-antigen.
896 Immunity 37, 893–904, November 16, 2012 ª2012 Elsevier Inc.
Reduced Self-Antigen Expression
Raises the Affinity Threshold of GC
B Cell Self-Tolerance
To assess the impact of reduced concen-

trations of self-antigen expression on the

development of cross-reactive GC B

cells, SWHEL B cells and HEL3X-SRBC

were injected into recipient mice ex-

pressing low but detectable amounts of

mHEL4X (flox-mHEL4X Tg) (Figure 5A)

from the same ubiquitously expressed

UBC promoter utilized by mHEL4X Tg

mice (Figure 2A). In contrast to responses

in mHEL4X Tg recipients, SWHEL donor

GC B cells in flox-mHEL4X Tg mice

acquired increased affinity for HEL4X
self-antigen, albeit not as high as that observed in WT recipients

(Figure 5B). Consistent with this, day 21 SHM analysis revealed

that approximately half the GC B cells present in flox-mHEL4X

Tg mice had undergone positive selection for the Y53D substitu-

tion (Figure 5C; Figure S5), which bestowed strong binding to

HEL4X (Ka = 2.8 3 107 M�1, Figure 4A; Figure S4). However,

the Y58F substitution, which increased the affinity of Y53D+

clones for HEL4X by a further 4-fold (Ka = 1.1 3 108 M�1, Fig-

ure 4A; Figure S4), was not strongly selected in flox-mHEL4X

Tg recipients and only rarely present in conjunction with Y53D

(Figure 5C; Figure S5). In contrast to mHEL4X Tg recipients,

flox-mHEL4X Tg mice contained high titers of anti-HEL4X IgG1

antibodies in their serum (Figure 5D). Thus, whereas low expres-

sion of HEL4X self-antigen prevented positive selection of the

highest affinity self-reactive GCB cells (Y53D+,Y58F+), self-reac-

tive Y53D+,Y58F� GC B cells persisted in these mice and gener-

ated a clear, affinity matured, class-switched autoantibody

response. These data show that competition between foreign

and self-antigen, impacted upon by both their relative concen-

trations and affinities for the BCR, is fundamental in determining

whether self-reactive GC B cells can be positively selected by



Figure 3. Failure of Self-Reactive GCBCells

to Develop in mHEL4X Tg Mice

(A–D) Switching to IgG1 and HEL3X versus HEL4X

binding capabilities of SWHEL GC B cells on days 5

and 14 of responses to HEL3X-SRBC. Data

represent donor SWHEL GC B cells (CD45.1+,

CD45.2�, B220+, CD38lo) in WT (A and B) and

mHEL4X Tg (C and D) recipients. Plots comprise

concatenated data from three mice and repre-

sentative of three independent experiments (n = 2–

4 per experimental group).

(E) Single cell SHM analysis of the IgH V-region of

SWHEL GC B cells on day 35. Grey columns indi-

cate the percentage of donor-derived GC B cell

clones carrying substitutions at each amino acid

residue. Colored bars indicate specific substitu-

tions present in >20% of clones in WT and/or

mHEL4X Tg recipients on day 35.

(F) Single cell SHM analysis of SWHEL GC B cells

on days 14 and 35. Sectors indicate fraction of

clones with the indicated combinations of Y53D

and Y58F substitutions. Clones analyzed are as

follows: WT recipients (d.14, n = 32; d.35, n = 22)

and mHEL4X Tg recipients (d.14, n = 28; d.35, n =

29). Data from each group are derived from two

mice. ****p < 0.0001.
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foreign antigen and ultimately give rise to an autoantibody

response (Figure S6).

GC Proximal Expression of Self-Antigen Is Required to
Prevent Positive Selection of Self-Reactive GC B Cells
To examine the impact of the location of self-antigen expression

on self-reactive GC B cells, we next utilized a series of Cre-trans-

genic mouse lines crossed with flox-mHEL4X Tg mice to express

high concentrations of mHEL4X in a tissue and/or cell-type-

specificmanner (Figure S6). Thesemice again acted as recipients

for SWHEL B cells together with HEL3X-SRBC foreign antigen.

Specific expression of mHEL4X on recipient B cells (Cd19-cre)

(Rickert et al., 1997) (Figure 6A), which locate within and closely

around GCs in the spleen, resulted in a virtual absence of

Y53D+ SWHEL B cell clones in splenic GCs (Figure 6D) and pre-

ventedthedevelopmentofanti-HEL4Xserumantibody (Figure6E).
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This replicated the phenotype of tolerant

mHEL4X Tg recipients (Figures 4 and 6E)

despite the fact that Cd19-cre x flox-

mHEL4X Tg recipients expressed much

lower overall concentrations of mHEL4X

in the spleen (Figure 6C). By contrast,

Cre-dependent expression of mHEL4X in

liver hepatocytes (Alb-cre) (Postic et al.,

1999) (Figure 6B) or the glomerular podo-

cytes of the kidney (NPHS2-cre) (Moeller

et al., 2003) and with no associated

increase in splenic mHEL4X expression

(Figure 6C), did not affect either the accu-

mulation of self-reactive Y53D+ B cells in

the GC (Figure 6D) nor the production of

anti-HEL4X autoantibodies (Figure 6E).

Thus, although the specific expression of
relatively low amounts of self-antigen proximal to the GC micro-

environment effectively prevented the positive selection of self-

reactive GCB cells, this was not true of the same self-antigen ex-

pressed at high concentrations in distal organs. Localization of

self-antigen proximal to the GC is therefore crucial to preventing

positive selection and autoantibody-production by cross-reac-

tive GC B cells (Figure S6).

Compensatory, Affinity-Reducing Mutations Permit
Long-Term Survival of Y53D+ GC B Cells
Although self-antigen expressed proximal to the GC could effec-

tively override positive selection of cross-reactive B cells gener-

ated in the GC, rare clones carrying apparently forbidden Y53D+

and Y53D+,Y58F+ self-reactive SWHEL specificities were routinely

found in GCs from mHEL4X Tg and flox-mHEL4X Tg mice chal-

lengedwithHEL3X-SRBC(Figure5C).Although thesecouldsimply
ovember 16, 2012 ª2012 Elsevier Inc. 897



Figure 4. High-Affinity Autoantibodies Are

Not Produced in mHEL4X Tg Mice

(A) Distribution of affinities for HEL3X and HEL4X of

WT HyHEL10 as well as specific HyHEL10

mutants carrying Y53D and/or Y58F substitutions

(see Figure S4).

(B) ELISA of the binding of the indicated recombi-

nant HyHEL10 molecules to HEL3X and HEL4X.

Binding to HEL4X is apparent in HyHEL10 carrying

Y53D (with or without Y58F) but not Y58F alone.

(C) ELISA of HEL3X and HEL4X binding by serum

IgG1 on day 21 of SWHEL B cell responses to

HEL3X-SRBC.mHEL4XTgmice fail to produce anti-

HEL4X IgG1. Lines indicate titration data of sera

from individual recipients, black lines representing

data from unimmunized WT mice.
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represent transient self-reactive clones destined for removal from

the GC, we sought to explore their significance in more detail.

Reasoning that such cells may be expanded in the presence of

stronger selection by foreign antigen, we analyzed the responses

of SWHELB cells inWT, flox-mHEL4XTgandmHEL4X Tg recipients

challenged on day 0 with HEL3X-SRBC foreign antigen as previ-

ously but also boosted with HEL3X-SRBC 4 or 5 days later.

BoostingwithHEL3X-SRBC resulted in a 3- to 4-fold increase in

the total number of SWHEL GC B cells observed on day 21 of

responses in recipients of all genotypes (data not shown).

However, it failed to increase either the frequency of self-reactive

(HEL4X-binding) GCB cells (Figure 7A versus 5B) or the amount of

anti-HEL4X IgG1 (Figure 7B versus 5D) produced in recipients ex-

pressingeither low (flox-mHEL4XTg)orhigh (mHEL4XTg) amounts

of mHEL4X self-antigen. Paradoxically, boosting mHEL4X Tg

recipients with HEL3X-SRBC foreign antigen resulted in a 4-fold

increase in the frequency of SWHEL GC B cells carrying the

Y53D substitution, such that they comprised�40% of the popu-

lation by day 21 of the response (Figure 7C versus 5C). On further

analysis, the Y53D+ clones inmHEL4X Tg recipientswere found to
898 Immunity 37, 893–904, November 16, 2012 ª2012 Elsevier Inc.
contain unusually high frequencies of

substitutions in and around CDR1 and

CDR3 coding regions of the Ig heavy-

chain variable region, as well as in certain

framework coding regions (Table S5). A

group of specific mutations were present

in Y53D+ GC B cell clones from mHEL4X

Tg, but not WT recipients (Tables S3 and

S5), suggesting that these mutations

may reduce rather than enhance the

affinity of theSWHELBCR forHEL3X and/or

HEL4X.

To test this proposition, we introduced

these substitutions (L4F, I29S, S31N,

S31Y, D32E, Y33F, Y58H, N94K; Table

S5) into Y53D+ HyHEL10 IgG1 antibodies

and their effect on HEL4X-binding activity

assessed by ELISA. In each case, the

binding of Y53D+ HyHEL10 to HEL4X

was either greatly reduced or rendered

undetectable (Figure S7A). These muta-

tions were present in 76% of the Y53D+
GCBcell clones sequenced fromHEL3X-SRBCboostedmHEL4X

Tg recipients (Figure 7D; Table S5). An additional 14% contained

mutations predicted to reduce HEL4X-binding by Y53D+

HyHEL10 based on their homology with verified inactivating

mutations (N94H, N94R) or nonconservative substitution of

a knownHEL contact residue (T30I) (Figure 7D; Table S5). Impor-

tantly, all modified Y53D+ HyHEL10 molecules retained higher

affinities for foreign antigen (HEL3X) than the original HyHEL10

SWHEL BCR (Figure S7B). Althoughwe cannot exclude the possi-

bility that mutations that were not analyzed here may impact on

reactivity with HEL3X and HEL4X, our analysis does suggest that

Y53D+GCBcells inmHEL4X Tgmice persist if they possess addi-

tional somatic mutation(s) that (1) decrease their affinity for self-

antigen (HEL4X) (Figure S7A) but (2) maintain increased affinity

for foreign antigen (HEL3X) (Figure S7B).

DISCUSSION

The threat to self-tolerance posed by SHM of the Ig variable

region genes in GC B cells has been recognized since the



Figure 5. Self-Reactive GCBCells Are Posi-

tively Selected and Produce Autoantibodies

in flox-mHEL4X Tg Mice

(A) Immunoprecipitation and protein immunoblot

analysis of mHEL4X expression in total spleen from

the indicated mice. Low but detectable amounts

of mHEL4X were found in flox-mHEL4X Tg mice.

(B) Switching to IgG1 and HEL4X binding capabil-

ities of SWHEL GC B cells on day 21 of responses

to HEL3X-SRBC. Self-reactive, HEL4X-binding GC

B cells were detected in flox-mHEL4X but not

mHEL4X Tg mice. Plots are representative of 14

independent experiments (n = 3–6 per experi-

mental group) and comprise concatenated data

from three mice.

(C) Single cell SHM analysis of SWHEL GC B cells

on day 21. Clones analyzed: WT (n = 31 from 10

mice), flox-mHEL4X Tg (n = 43 from ten mice), and

mHEL4X Tg (n = 38 from ten mice).

(D) Endpoint titer (left) and titration (right) analysis

of anti-HEL4X IgG1 in day 21 sera. Titration data is

displayed as for Figure 4C, with data from the

additional flox-mHEL4X Tg recipient group shown

in blue. Data is representative of seven indepen-

dent experiments analyzed at day 21. ****p <

0.0001, ***p < 0.001, **p = 0.001 to 0.01; ns = not

significant.
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1980s (Nossal, 1988). However, although great progress has

been made in determining the fate of self-reactive B cells

produced by primary BCR diversification in the bone marrow,
Immunity 37, 893–904, N
the dynamic and complex nature of

SHM and selection within the GC has

made it extremely difficult to identify and

ascertain the fate of self-reactive B cells

generated during this secondary phase

of BCR diversification (Chan and Brink,

2012). The experimental model described

here represents an important step

forward in understanding how self-toler-

ance is enforced in the GC and how it

may fail and give rise to autoimmunity.

Thus, by challenging SWHEL B cells with

HEL3X in the context of mHEL4X self-

antigen expression, we have developed

the ability to (1) identify bona fide self-

reactive B cells generated by SHM in

the GC and (2) examine the fate of these

cells when their target self-antigen is ex-

pressed at varying concentrations and

in different locations.

Our major findings were that (1) self-

reactive B cells can be effectively

removed from the GC regardless of

cross-reactivity with foreign antigen, (2)

their removal depends on sufficient

expression of the target self-antigen

within or proximal to the GC, and (3)

self-reactive GC B cells can escape dele-

tion, undergo positive selection by
foreign antigen, and initiate an autoantibody response if target

self-antigen expression is low or physically separate from

the GC.
ovember 16, 2012 ª2012 Elsevier Inc. 899



Figure 6. Failure of GC Self-Tolerance

When Self-Antigen Is Expressed Distal to

the GC

(A) Specific expression of mHEL4X on splenic B

cells from flox-mHEL4X Tg mice carrying Cd19-cre

transgene.

(B and C) Immunoprecipitation and protein

immunoblot analysis ofmHEL4X expression in total

liver or spleen from the indicated mice.

(D) Single cell SHM analysis of SWHEL GC B cells

on day 21 of SWHEL B cell responses to HEL3X-

SRBC. Clones analyzed in flox-mHEL4X Tg with:

no Cre (n = 20), B cell Cre (n = 17), liver Cre (n = 29),

kidney Cre (n = 24). SHM data comprise pooled

data from two independent experiments (n = 6 per

experimental group).

(E) Endpoint titer data of anti-HEL4X IgG1 in day 21

sera. Data is representative of five independent

experiments. ****p < 0.0001, **p = 0.001 to 0.01,

ns = not significant.
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The most striking implication of these results is that there is no

apparent mechanism in place to prevent self-reactive B cells

generated in the GC from producing autoantibodies directed
900 Immunity 37, 893–904, November 16, 2012 ª2012 Elsevier Inc.
against self-antigens expressed outside

the GC microenvironment. Thus GC B

cells that acquire reactivity with self-

antigen expressed in a distal organ such

as the liver remain susceptible to positive

selection by cross-reactive foreign

antigen and can therefore differentiate

unimpeded into autoantibody-producing

plasma cells. This failure to enforce self-

tolerance to tissue-specific self-antigens

in GC B cells stands in contrast to the

purging of B and T lymphocytes recog-

nizing this class of self-antigen at other

checkpoints during lymphocyte differen-

tiation. In the primary B cell repertoire,

for instance, B cells recognizing tissue-

specific antigens circulate through the

body in a quiescent state and can be

deleted or rendered inactive when they

encounter their cognate self-antigen (Ro-

jas et al., 2001; Russell et al., 1991).

Furthermore, specialized medullary

epithelial cells located in the thymus

purge the early T cell repertoire of many

clones reactive to distally expressed

self-antigens by presenting peptides

from these tissue-specific proteins

(Mathis and Benoist, 2009). It is likely,

therefore, that the incomplete control of

self-reactive B cells generated in the GC

represents a ‘‘weak link’’ in the mecha-

nisms that collectively enforce self-toler-

ance in the immune system.

The failure to comprehensively enforce

self-tolerance in theGCmay be attributed
to the difficulty of controlling self-reactive B cells generated in

the midst of an active immune reaction against foreign antigen.

Thus, in the absence of sufficient amounts of target self-antigen



Figure 7. Boosting with Foreign Antigen

Does Not Break GC B Cell Self-Tolerance

SWHEL B cells were challenged and boosted with

HEL3X-SRBC. Data is from two independent

experiments. Antigen boost was given on day 4 or

day 5 without altering the response obtained.

(A) HEL4X binding capabilities of SWHEL GC B cells

on day 21. Plots are representative of three inde-

pendent experiments (n = 2–5 per experimental

group) and comprise concatenated data from two

mice.

(B) Endpoint titer (left) and titration (right) analysis

of anti-HEL4X IgG1 in sera from day 21 of

responses. Titration data is displayed as for Fig-

ure 5D. ***p < 0.001, ****p < 0.0001.

(C) Single cell SHM analysis of SWHEL GC B cells

on day 21. The fraction of clones with Y53D is

increased �4-fold in mHEL4X Tg mice given an

antigen boost (compare with Figure 5C). Clones

analyzed: WT (n = 48), flox-mHEL4X Tg (n = 55),

and mHEL4X Tg (n = 54). SHM data comprise

pooled data from six mice from two independent

experiments. ***p < 0.001, ****p < 0.0001.

(D) Percentage of clones containing confirmed

(orange) or likely (yellow) affinity-reducing muta-

tions within the Y53D+ and Y53D� GC B cell

populations frommHEL4X Tg recipient mice (Table

S5) as well as the Y53D+ GCB cell population from

WT recipient mice (Table S3). See Figure S7 for

HEL4X and HEL3X binding analyses.
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proximal to the GC microenvironment, self-reactive GC B cells

remain ‘‘ignorant’’ of their self-reactivity and continue to receive

help from GC-resident anti-foreign TFH cells. In this way, the

production of antibodies against tissue-specific self-antigens

can proceed without the need to compromise T cell self-toler-

ance. These findings imply that autoantibody production could

emerge from any humoral immune response directed against

a foreign antigen that has some structural homology to

a tissue-specific self-antigen. Evidence that this phenomenon
Immunity 37, 893–904, N
occurs during conventional immune

responses is provided by the emergence

of cross-reactive autoantibodies in re-

sponse to viral antigens (Srinivasappa

et al., 1986) and the frequent association

of cross-reactive autoantibodies with

postinfectious, tissue-specific autoim-

mune diseases such as hepatitis

C-related immune thrombocytopenia

(Zhang et al., 2009), pauci-immune focal

necrotizing glomerulonephritis (Kain

et al., 2008), Chagas disease (Cunha-

Neto et al., 2006), Guillain-Barré

syndrome (Yuki et al., 2004), and rheu-

matic carditis (Guilherme et al., 2006).

Thus the inability of the immune system

to prevent the production of cross-reac-

tive autoantibodies from theGC response

may contribute to the onset and/or

progression of a number of human auto-

immune diseases.
One of the key implications of our findings is that the balance

between the recognition of self and foreign antigens is critical to

determining the fate of self-reactive GC B cells. In this regard,

both the amount of each competing antigen type and the relative

affinity of the BCR for them each play important roles. This point

is illustrated by our finding that the reduced expression of

mHEL4X self-antigen in flox-mHEL4X Tg versus mHEL4X Tg

mice permitted the positive selection of self-reactive

Y53D+,Y58F� GC B cells but still prevented the development
ovember 16, 2012 ª2012 Elsevier Inc. 901
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of the higher-affinity Y53D+,Y58F+ self-reactive clones. Mecha-

nistically, we propose that the preferential association of GC B

cells with self instead of foreign antigen prevents the reception

of sufficient stimulatory signals from foreign antigen and limits

their access to help from GC-resident TFH cells (Victora et al.,

2010). Under such circumstances, self-reactive GC B cells

would be at a competitive disadvantage compared to cells that

recognize foreign but not self-antigen and so would fail to be

propagated in the GC (eg Y53D+ versus Y53D�,Y58F+ clones

in mHEL4X Tg mice).

Another possibility is that the interaction of GC B cells with self

versus foreign antigen leads to the delivery of quantitatively or

qualitatively distinct signal(s) that result in the direct killing of

self-reactive GC B cells. This may be true in particular when

self-antigen is present at high concentrations, because GC B

cells undergo rapid cell death when exposed to very high

concentrations of exogenous antigen (Han et al., 1995; Pulen-

dran et al., 1995; Shokat and Goodnow, 1995). In these models

of GC negative selection, the death of antigen-reactive GC B

cells was at least partially blocked by overexpression of the

anti-apoptotic protein Bcl-2. Interestingly, this strategy reduces

overall apoptosis in the GC and also blocks the death of GC B

cells that would otherwise be removed due to their low affinity

for foreign antigen (Smith et al., 2000). It will be of interest to

determine whether the death of bona fide self-reactive B cells

will also be blocked by overexpression of Bcl-2, or whether

potentially other members of the Bcl-2 family, such as Mcl-1

(Vikstrom et al., 2010), may play a more prominent role.

Although the form of antigen used in this study provides

a strong source of SRBC-specific T cell help to HEL3X-binding

SWHEL B cells, it is possible that the use of alternative adjuvants

and/or sources of T cell help might provide a stronger selection

for foreign antigen and thus facilitate selection of cross-reactive

GCB cells even when the target self-antigen is expressed at high

concentrations. Separate experiments in which HEL3X was

conjugated to ovalbumin and injected in alum adjuvant failed

to rescue self-reactive SWHEL GC B cells or generate anti-

HEL4X autoantibodies in mHEL4X Tg recipients (data not shown).

This result, together with demonstration here that boosting with

HEL3X-SRBC also fails to break self-tolerance in mHEL4X Tg

mice, indicates that the enforcement of GC self-tolerance is

robust when self-antigen is expressed at sufficient concentra-

tions proximal to the GC. Nevertheless, it will be of interest to

determine whether potentially stronger challenges, such as

HEL3X conjugated with TLR ligands or active pathogens, might

more readily compromise GC self-tolerance and precipitate

autoimmunity.

The results presented here reveal an exceptional capability for

SHM-coupled positive and negative selection in the GC to shape

BCR binding specificities to match the local antigen environ-

ment.While optimization of BCR affinity for foreign antigen drives

the GC reaction, avoidance of cross-reactivity with localized

self-antigen exerts a dominant influence that ultimately deter-

mines which somatic mutations can contribute to high affinity

antibodies directed against foreign antigens. On the other

hand, the failure of self-antigens expressed distal to the GC to

have any impact on the secondary B cell repertoire represents

an autoimmune risk. This ‘‘weak link’’ in self-tolerance is likely

to contribute to the production of cross-reactive autoantibodies
902 Immunity 37, 893–904, November 16, 2012 ª2012 Elsevier Inc.
that can recognize tissue-specific self-antigens and potentially

to the genesis of postinfectious autoimmune disease.
EXPERIMENTAL PROCEDURES

HEL3X and HEL4X Proteins

HEL3X is a recombinant version of HEL that carries the R21Q, R73E, and

D101R substitutions (Paus et al., 2006). To produce HEL4X, a pIRES expres-

sion plasmid was first produced carrying a cDNA encoding a membrane-

bound form of HEL3X (mHEL3X) with the transmembrane and cytoplasmic

domains of the H-2Kk class I major histocompatibility complex (MHC) mole-

cule (Hartley et al., 1991). Candidate mHEL4X molecules were produced by

introducing a variety of amino acid substitutions at the K97 position of and ex-

pressed separately on the surface of HEK293. The substitution chosen was

K97R (Figure 1A). cDNAs encoding soluble, His-tagged versions of HEL3X

and HEL4X were cloned into the pPIC9K vector and the recombinant proteins

expressed in yeast (Pichia pastoris) and purified from culture supernatants

(Paus et al., 2006).

flox-mHEL4X Tg and mHEL4X Tg Mice

An expression construct was assembled consisting of human ubiquitin C

(UBC) promoter, loxP-flanked SV40 early polyadenylation site (pA), FRT-

flanked mHEL3X cDNA with 30 bovine growth hormone polyadenylation site,

mHEL4X cDNA with 30 bovine growth hormone polyadenylation site, murine

phosphoglycerate kinase (Pgk) promoter, neomycin resistance gene (neor)

cDNA, and a 30 splice donor sequence. A gene-targeting construct was

assembled by inserting the expression construct between 50 and 30 homology

arms from the murine ROSA26 locus (Figure S2). Gene targeting in C57BL/6

Bruce4 embryonic stem cells was performed by Ozgene (Bentley, West

Australia) and Tg foundermouse obtained carrying a single copy of the expres-

sion construct targeted to the ROSA26 locus. This founder line (flox-mHEL3X

Tg) was crossed with ACTB-FLPe (Rodrı́guez et al., 2000) mice to obtain

a germ-line deletion of the mHEL3X cDNA and produce founders for the flox-

mHEL4X Tg line. flox-mHEL4X Tg mice were in turn converted into founders

for the mHEL4X Tg line by crossing with a ROSA26-cre Tg line (Ozgene) to

obtain germ-line deletion of the floxed polyadenylation site (Figure S2). Soluble

HEL4X is detectable in sera frommHEL4X Tg mice (range 4–11 ng/ml in 6 mice)

but is undetectable (<1 ng/ml) in straight flox-mHEL4X Tg mice and all Cre Tg

crosses.

Other Mice and SWHEL B Cell Transfer Experiments

SWHEL mice (Phan et al., 2003) were bred onto a CD45.1 congenic C57BL/6

background while all other mice were maintained on a pure C57BL/6

(CD45.2+) background. All mice were bred and housed in specific path-

ogen-free conditions at Australian Bioresources (Moss Vale, Australia) and

the Garvan Institute. The following Cre Tg lines were used: Cd19-cre (Rickert

et al., 1997), Alb-cre (Postic et al., 1999), NPHS2-cre (Moeller et al., 2003).

Intravenous transfers of SWHEL B cells (33 104 HEL-binding B cells per recip-

ient) together with HEL3X-SRBC (2 3 108 per recipient) were performed as

described (Paus et al., 2006). All animal experiments were carried out in

accordance with the guidelines of the Garvan St Vincent’s Animal Ethics

Committee.

Flow Cytometric Analysis

Staining procedures, reagents, data acquisition, and analysis of flow cytome-

try data have been previously described (Chan et al., 2009). Between 6–12 3

106 events were collected per sample and light scatter gating performed to

exclude dead cells and debris. A further doublet exclusion gate was applied

and gates were set to exclude autofluorescent cells. GC B cells were identified

within recipient spleen cell preparations as CD45.1+, CD45.2�, B220+, CD38lo

and typically comprised 0.1%–0.3% of total spleen cells. Binding of HEL3X or

HEL4X by GC B cells was revealed by staining with the unlabelled proteins

(50 ng/ml and 100 ng/ml, respectively) followed byHyHEL9-Alexa 647. Surface

expression of mHEL4X was detected directly with HyHEL9-Alexa647 and B

cell, T cell, and red blood cell (RBC) subpopulations identified using the

B220, CD3, and TER-119 lineage-specific markers, respectively.
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Single-Cell Flow-Cytometry-Based Sorting and SHM Analysis

Cell suspensions were prepared as for flow cytometry analysis. Total donor-

derived GC B cells were identified with anti-CD45.1-FITC, anti-CD38-PE,

and anti-B220-APC. Single-cell sorting was performed on a FACSAria (BD

Biosciences), and the variable region exon of the SWHEL Ig (HyHEL10) heavy

chain gene was amplified by PCR, sequenced, and analyzed as previously

described (Paus et al., 2006).

HEL3X-and HEL4X-Binding ELISA

ELISA detection of the binding of recombinant HyHEL10 IgG1 molecules and

serum antibodies to HEL3X and HEL4Xwere performed as previously described

(Phan et al., 2003) except HEL3X or HEL4X protein coated 384-well plates

(Corning) were used. To quantify serum antibody concentrations, endpoint

titers were calculated based on 97.5% confidence levels or greater (Frey

et al., 1998).

Immunofluorescence Histology

Sections were cut and prepared as previously described (Chan et al., 2009).

Detection of mHEL4X expression was with polyclonal rabbit anti-HEL IgG

(Rockland Immunochemicals) followed by Alexa 555-conjugated anti-rabbit

IgG(H+L) (Invitrogen Molecular Probes). Naive B cells were revealed with

anti-IgD-Alexa 647 (clone 11-26c.2a, BD Biosciences) and GCs using PNA-

FITC (Vector Laboratories).

Detection of HEL4X Expression by Immunoprecipitation and Protein

Immunoblots

Equivalent tissue amounts by weight were homogenized in RIPA buffer and

immunoprecipitated at 4�C using Protein G beads and purified HyHEL9mono-

clonal antibody. Immunoblotting was performed as previously described (Gar-

dam et al., 2008) with membranes probed with polyclonal rabbit anti-HEL IgG

(Rockland) followed by sheep anti-rabbit IgG-HRP (Santa Cruz).

Recombinant HyHEL10 IgG1 Antibody Production and Binding

Affinity Analysis

WT and mutant recombinant HyHEL10 IgG1 mAbs were expressed in CHO

cells as previously described (Phan et al., 2006). Biacore analysis was per-

formed at 25�C using a Biacore 2000 (GEHealthcare). Anti-mouse IgG1mono-

clonal antibody (A85-1, BD Biosciences) was immobilized onto a CM5 sensor

chip (GE Healthcare) using amine coupling to attain a target density of 10,000

RU. HyHEL10 IgG1 mutants were then injected to achieve a reading of 1,000

RU. Binding of antigen was assessed by injecting serial dilutions of HEL3X or

HEL4X (5.6 mM–1.0 nM) over all flow cells at a flow rate of 30 ml/min until equi-

librium was reached. Equilibrium binding constants (Ka) were determined by

fitting sensorgrams to a 1:1 Langmuir binding model using BIAevaluation 4.1

program (GE Healthcare). Where association and dissociation rates could

not be determined using kinetic fits, binding affinity was determined by

Scatchard plot analysis using responses obtained during steady-state phase

of binding.

Statistical Analysis

Statistical significance of serum antibody endpoint titers and SHM data were

calculated using Graphpad Prism software. For endpoint titers, multiple

comparisons were performed using ANOVA analyseswith the Bonferroni post-

test and 99.9% confidence levels applied. Statistical analyses of the SHMdata

were performed using the chi-square test and 99% confidence intervals

applied.
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