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Konstantopoulos N, Foletta VC, Segal DH, Shields KA,
Sanigorski A, Windmill K, Swinton C, Connor T, Wanyonyi S,
Dyer TD, Fahey RP, Watt RA, Curran JE, Molero JC, Krip-
pner G, Collier GR, James DE, Blangero J, Jowett JB, Walder
KR. A gene expression signature for insulin resistance. Physiol
Genomics 43: 110 –120, 2011. First published November 16, 2010;
doi:10.1152/physiolgenomics.00115.2010.—Insulin resistance is a
heterogeneous disorder caused by a range of genetic and environmen-
tal factors, and we hypothesize that its etiology varies considerably
between individuals. This heterogeneity provides significant challenges
to the development of effective therapeutic regimes for long-term man-
agement of type 2 diabetes. We describe a novel strategy, using large-
scale gene expression profiling, to develop a gene expression signature
(GES) that reflects the overall state of insulin resistance in cells and
patients. The GES was developed from 3T3-L1 adipocytes that were
made “insulin resistant” by treatment with tumor necrosis factor-�
(TNF-�) and then reversed with aspirin and troglitazone (“resensitized”).
The GES consisted of five genes whose expression levels best discrim-
inated between the insulin-resistant and insulin-resensitized states. We
then used this GES to screen a compound library for agents that affected
the GES genes in 3T3-L1 adipocytes in a way that most closely resem-
bled the changes seen when insulin resistance was successfully reversed
with aspirin and troglitazone. This screen identified both known and new
insulin-sensitizing compounds including nonsteroidal anti-inflammatory
agents, �-adrenergic antagonists, �-lactams, and sodium channel block-
ers. We tested the biological relevance of this GES in participants in the
San Antonio Family Heart Study (n � 1,240) and showed that patients
with the lowest GES scores were more insulin resistant (according to
HOMA_IR and fasting plasma insulin levels; P � 0.001). These findings
show that GES technology can be used for both the discovery of
insulin-sensitizing compounds and the characterization of patients into
subtypes of insulin resistance according to GES scores, opening the
possibility of developing a personalized medicine approach to type 2
diabetes.
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GENE EXPRESSION SIGNATURES (GESs) were first described as
clusters of coordinately expressed genes (2) and were further
defined as the expression pattern of a small set of genes that

consistently and robustly represent the integrated biological
response of a cell or tissue to its environment without neces-
sarily incorporating genes playing a direct role in the changed
metabolic state (47). GESs have been used in oncology to
assist in tumor classification, prognosis, and patient response to
therapies (11, 32). The application of GESs in oncology has
also been extended to smaller gene subsets for use in com-
pound library screening to search for small molecules that
induce gene expression patterns with high similarity to the
GES (41, 42). We sought to extend the GES approach to the
field of insulin resistance and type 2 diabetes.

Type 2 diabetes is a major health issue worldwide, and a key
feature of this disease is insulin resistance. The causes of
insulin resistance are multifactorial and can include elevated
circulating levels of nonesterified fatty acids and inflammatory
cytokines, endoplasmic reticulum stress, and oxidative stress
(reviewed in Ref. 29). We hypothesized that a GES that reflects
the insulin sensitivity of a cell could be identified and subse-
quently used to screen a compound library for insulin-sensi-
tizing agents. To test this hypothesis, we developed an in vitro
model system to mirror the amelioration of insulin resistance
by therapeutics that is known to reverse the impaired glucose
tolerance associated with type 2 diabetes.

In this model, 3T3-L1 adipocytes were rendered either
“insulin resistant” by treatment with the proinflammatory cy-
tokine tumor necrosis factor-� (TNF-�) or “insulin resensi-
tized” by treatment first with TNF-� and second with estab-
lished insulin sensitizers aspirin (acetylsalicylic acid, ASA)
and troglitazone (TGZ) (27, 51) to reverse the effects of TNF-�
(Fig. 1A). Insulin sensitivity was assessed by 2-deoxyglucose
(2-DOG) uptake as the functional end point. We then per-
formed large-scale gene expression profiling and Bayesian
model selection to identify a GES consisting of a small subset
of genes whose expression patterns most robustly and signifi-
cantly represented the difference between the insulin-resistant
and insulin-resensitized states in TNF-�-treated 3T3-L1 adi-
pocytes. Our study provides evidence that an in vitro-derived
GES stratified a human population according to their level of
insulin resistance, and that it can be used to screen a small
compound library to search for new insulin-sensitizing com-
pounds.
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EXPERIMENTAL PROCEDURES

Cell Culture and Treatments

3T3-L1 fibroblasts were cultured and differentiated as described
previously (20). Adipocytes were used for experiments 7–12 days
after the initiation of differentiation, at which time �80% of fibro-
blasts had differentiated into mature adipocytes. As illustrated in Fig.
1A, differentiated 3T3-L1 adipocytes were treated with vehicle
(milli-Q water) or 3 ng/ml TNF-� (Peprotech, Rocky Hill, NJ) for 48
h in Dulbecco’s modified Eagle’s medium (DMEM; GIBCO Invitro-
gen, Melbourne, Australia) containing 10% (vol/vol) heat-inactivated
FBS (Invitrogen). Adipocytes were then treated for a further 24 h with
0.1% DMSO (vehicle), 3 ng/ml TNF-� and 0.1% DMSO (“insulin
resistant”), or 3 ng/ml TNF-�, 5 mM ASA (Sigma-Aldrich, Sydney,
Australia), and 10 �M TGZ (Sigma-Aldrich) (“insulin resensitized”)
in serum-free DMEM containing 0.2% (wt/vol) RIA-grade BSA
(Sigma-Aldrich). Treatments were replenished every 24 h.

2-Deoxyglucose Uptake

Glucose transport was measured as 2-deoxy-[U-3H]glucose uptake
as described elsewhere (20). Briefly, treated 3T3-L1 adipocytes in
24-well plates were washed twice in Dulbecco’s PBS, pH 7.4 (GIBCO
Invitrogen) containing 0.2% (wt/vol) RIA-grade BSA, 0.5 mM
MgCl2, and 0.9 mM CaCl2. Insulin (Humulin R; Novo Nordisk,
Baulkham Hills, Australia) at 0 and 10 nM was added for 30 min at

37°C. Uptake of 50 �M 2-DOG and 0.5 �Ci 2-deoxy-[U-3H]glucose
(NEN, PerkinElmer Life Sciences, Melbourne, Australia) per well
was measured over the final 10 min of insulin stimulation. The
reaction was stopped by addition of 80 �g/ml ice-cold phloretin
(Sigma-Aldrich) in PBS, and cells were then solubilized in 0.03%
(wt/vol) SDS (GIBCO Invitrogen). Counts per minute were measured
by a 2900TR-LSA scintillation counter (Packard Bioscience,
PerkinElmer Life Sciences). Data were analyzed with Statistical
Package for the Social Sciences software (SPSS version 17.0; Fuller-
ton, CA). Analyses were performed on data where normality of
distribution was considered with the Kolmogorov-Smirnov test. Data
were analyzed with one-way ANOVA analysis with post hoc Tukey
honestly significant difference (HSD), and the mean difference was
considered significant at the 0.05 level.

Generation of GES

RNA extractions and microarrays. Unannotated mouse skeletal
muscle cDNA microarrays containing �12,000 elements (with a
redundancy rate of 21%) were generated and hybridized as described
previously (9). Total RNA was extracted from 3T3-L1 adipocytes
treated with vehicle (0.1% DMSO, n � 20), TNF-� (n � 20), or
TNF-� plus ASA and TGZ (n � 20) with TRIzol reagent and purified
with RNA cleanup columns as per manufacturer’s instructions (In-
vitrogen). The quality and quantity of the RNA were determined with
the Agilent Bioanalyzer and RNA 600 Nano Assay kit (Agilent,
Melbourne, Australia). Fluorescence-labeled cDNA was prepared
from 20 �g of total RNA with indirect labeling and hybridized to the
microarray slides. An identical reference RNA, prepared from pooled
experimental RNA, was used across all hybridizations. For all hybrid-
izations, cDNA from the reference RNA was labeled with Cy3, while
experimental cDNA was labeled with Cy5. Fluorescent images of the
microarrays were acquired with a 4000B scanner, and data were
extracted with GenePix Pro 5.1 software (Molecular Devices, Mel-
bourne, Australia). Normalization and primary microarray data anal-
ysis were performed with Acuity 4 software (Molecular Devices) as
detailed previously (9). The microarray data set generated from this
study conforms to the MIAME guidelines and is available at Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi) series record GSE18103.

Selection of GES. Two statistical approaches were compared and
used to identify the optimal set of genes (GES) that best predicts the
reversal of the insulin resistance state (TNF-� � TGZ and ASA
treatment group) from the insulin resistance state (TNF-�-alone treat-
ment group). Given a set of 20 replicates per treatment, the predictive
set of genes was limited to �8 in order to guarantee sufficient
statistical estimation of joint predictors. A GES of up to eight genes
was also preferred in view of its subsequent requirement—a manage-
able number of genes that can be multiplexed and measured for
screening a compound library.

The first approach used a combination of diagonal linear discrimi-
nant analysis (DLDA) and the signal-to-noise ratio (SNR) statistic as
described by Stegmaier et al. (41). To select the genes that were
significantly different between vehicle and TNF-�-alone treatment
groups (P � 0.01), pairwise comparisons between the two treatment
groups by Student’s t-test were performed. With only the set of genes
that were affected by the TNF-� treatment, DLDA was then per-
formed to identify the genes that best discriminate the TNF-�-alone
treatment group from the TNF-� plus TGZ and ASA treatment group.
Briefly, the DLDA algorithm (using Acuity software) classified the
TNF-�-alone-treated microarray data set as one group and the TNF-�
plus TGZ and ASA-treated microarray data set as another group. With
a forward stepwise variable selection, DLDA identified the minimal
set of genes with optimal ability to separate each data set into the two
groups specified, in our case, the TNF-�-alone-treated group versus
the TNF-� plus TGZ and ASA-treated group. The SNR statistic was
used to rank the DLDA-selected genes according to their discriminat-

Fig. 1. Reversal of tumor necrosis factor-� (TNF-�)-induced insulin resistance
in 3T3-L1 adipocytes. A: 3T3-L1 adipocytes were treated for 72 h with vehicle
(Veh), 3 ng/ml TNF-� (TNF), or TNF-� � 10 �M troglitazone (TGZ) and 5
mM aspirin (acetylsalicylic acid, ASA), with ASA and TGZ only added in the
final 24 h (TTA). Cells were then treated with insulin (0 or 10 nM) for 30 min,
followed by measurement of 2-deoxyglucose (2-DOG) uptake over the final 10
min of insulin stimulation. B: data are presented as % change in insulin-
stimulated 2-DOG uptake compared with vehicle-treated, insulin-stimulated
cells and represent means 	 SE of 6 independent experiments; each data point
was assayed in triplicate. The fold increase in 2-DOG uptake in vehicle-
treated, insulin-stimulated adipocytes was 6.6 	 0.6 above basal level (P �
0.001 compared with vehicle-treated alone). The average amount of 2-DOG
transported in vehicle-treated adipocytes was 20.5 	 3.4 pmol·min
1·well
1.
*P � 0.001 compared with Veh; ^P � 0.001 compared with TNF. Statistical
analyses were performed with 1-way ANOVA, and multiple testing correction
was performed with Tukey honestly significant difference (HSD).
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ing ability. SPSS was then used to reduce signature genes to a small
subset that were discriminating and displayed divergent expression
profiles.

The second approach used Bayesian methods, which allow greater
flexibility to thoroughly model all of the available information and
thus model all possible gene combinations (7). A preliminary analysis
of the microarray data was performed with a robust linear model
(based on a multivariate t distribution) with accompanying likelihood
ratio test to identify each transcript that showed at least a suggestive
nominal difference in expression between the insulin-resistant and
insulin-resensitized treatment groups (P � 0.01). A Bayesian model
selection procedure was next employed (7) in which all possible
models of up to eight genes were generated to obtain a Bayesian-
averaged regression equation that served as the GES. The models
were then examined for their ability to differentiate accurately be-
tween the treatment groups by direct testing using an objective
Bayesian selection mechanism. The selection was then refined with an
additional weighting (truncated Poisson distribution) that favors mod-
els of lower complexity, that is, with fewer contributing genes in the
GES.

The first approach identified one GES that exhibited the best
statistical ability to discriminate between the treatment groups. The
Bayesian approach identified 20 GESs (including the GES from the
first approach) and ranked them according to their predictive power.
The total number of genes that were identified in the 20 putative GES
sets with both statistical approaches was only 20, indicating the
considerable redundancy in the genes included in the various GES
gene sets. Each gene was then sequenced and validated (detailed
below), and the gene set with the expression profile validated in all
technologies used [from microarray to real-time PCR and matrix-
assisted laser desorption/ionization (MALDI)-time of flight (TOF)-
based quantitative analysis system] was selected. The result of these
analyses was the identification of a GES of five genes that fulfilled the
following criteria: 1) gene expression profile was validated by other
technologies and in other samples; 2) the validated set of genes
retained the best predictive power to discriminate the insulin-resistant
treatment group from the insulin-resensitized treatment group; and
3) since the GES needed to be relevant beyond the cell culture model
that it was derived from (to identify novel insulin-sensitizing agents),
the GES genes must also be expressed in human lymphocytes (de-
tailed below).

Gene validation. The unknown cDNAs representing the GES were
identified by sequencing using an ABI 1300 genetic analyzer. To
confirm the gene expression profile exhibited by the microarray,
gene expression was analyzed by semiquantitative real-time PCR
(qPCR) using Brilliant SYBR Master Mix (Stratagene, La Jolla,
CA) on the MX3005P QPCR system (Stratagene). Validation was
performed on the same RNA/cDNA used for microarray (technical
replication) as well as alternative sets of treated samples (biolog-
ical replication). The qPCR conditions were 95°C for 10 min and
40 cycles of 95°C for 30 s and 60°C for 1 min. Relative gene
expression was calculated as 2
�Ct, where Ct is threshold cycle.

The expression levels of the housekeeping gene cyclophilin were
not altered with any of the treatments (data not shown). Table 1
displays the list of primer sequences. Data were tested for normal-
ity of distribution by the Kolmogorov-Smirnov test with SPSS.
Data were analyzed by one-way ANOVA with post hoc Tukey
HSD to adjust P values for multiple comparison. P � 0.05 was
considered statistically significant.

Compound Library Screen

3T3-L1 adipocytes at day 7 after differentiation in gelatin-coated
96-well plates were treated with TNF-� (3 ng/ml, 48 h, 37°C) in
DMEM containing 10% FBS and then treated for a further 24 h with
3 ng/ml TNF-� and 10 �M compound in serum-free DMEM contain-
ing 0.2% BSA. Compounds were obtained from a chemical library
consisting of 1,120 agents including off-patent drugs, bioactive alka-
loids, and proprietary natural products. Vehicle (0.1% DMSO; n �
4)-, TNF-� (n � 4)-, and TNF-� plus ASA and TGZ (n � 2)-treated
wells serving as controls were included on each assay plate to obtain
a confidence interval, and treatments were replenished every 24 h. All
plates where controls did not fall within 2 standard deviations of the
mean for all plates were rejected. RNA was extracted from each well
with RNeasy 96 Kits (Qiagen, Melbourne, Australia), and gene
expression levels of the five GES genes were multiplexed and quan-
tified with the MALDI-TOF-based quantitative gene expression anal-
ysis system (MassARRAY; Sequenom, San Diego, CA) (12).

To score the results of the screen, a custom algorithm was devel-
oped to allow the measurements of each of the five GES genes to be
combined to provide a single score (termed “GES score” throughout).
The gene expression levels of routinely used housekeeping genes
[aldo-keto reductase family 1, member A4 (AKR1A4), NCBI acces-
sion no. NM_021473; peptidylprolyl isomerase A (PPIA/cyclophilin
A), NCBI accession no. NM_008907] were not constant across the
experimental groups (data not shown). Therefore, to control for the
different amounts of input cDNA, the raw expression levels of each
measured gene were summed to give a total expression value. Each
gene’s expression level was then expressed relative to this total
expression value, which was performed by taking the residual follow-
ing a regression between the gene and the sample’s total expression
value. In independent tests, we observed that this most closely
matched input cDNA amounts as measured by spectrophotometric
means across treatments (data not shown). The resulting distribution
across all treatments was standardized (z score) in order to allow
direct comparison across all genes and between samples. This is
referred to as the “normalized expression level of the gene.”

To generate the final score for each treatment, an algorithm derived
from the optimal statistical model for discriminating between the
insulin-resistant and insulin-resensitized states were used. The �-cor-
relation coefficient from the model was applied to each of the five
genes to account for the relative contribution that each gene made to
the predictive power of the total GES. Correlation coefficients were
used to multiply the measured gene expression level and summed to

Table 1. Primer sequences for qPCR analyses of the 5 genes comprising the TNF-�-based GES and the housekeeping gene

Gene Name NCBI Reference No. Forward Primer Reverse Primer

ACS1 NM_007981 tggtcgtcccgctctatga tcacagagagttcagctttgttcac
CD63 NM_007653 agtgtgtcaagtttttgctctacgtt caccaatggcgatcaatcc
STEAP4 NM_054098 ccagtcaggaacactagatgcaa agcccaagagtacgagcaatg
Skp1a NM_011543 gggaccaagaattcctgaaagtt gcatgtgacatcaagcaaacct
PKM2 NM_011099 caagatcatcagcaaatcgagaa cccatcactggcctccaa
Ppia NM_008907 cccaccgtgttcttcgaca ccagtgctcagagctcgaaa

qPCR, quantitative real-time PCR; TNF-�, tumor necrosis factor-�; GES, gene expression signature; ACSl, acyl-CoA synthetase long-chain family member
1/FACL2, fatty acid-coenzyme A ligase, long-chain 2; STEAP4, six transmembrane epithelial antigen of the prostate/TIARP, TNF-�-induced adipose-related
protein/STAMP2, six transmembrane protein of prostate 2; Skp1a, S-phase kinase associated protein 1A; PKM2, pyruvate kinase, muscle 2; Ppia, peptidylprolyl
isomerase A/cyclophilin A. Italics, data not shown.
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give a single metric. The resulting custom algorithm was ([�]0.706 �
ACS1) � ([
]0.646 � CD63) � ([
]0.825 � Skp1a) � ([
]0.502 �
PKM2) � ([
]0.594 � STEAP4). In the example of ACS1, 0.706 is
the �-correlation coefficient for the gene, [�] indicates the direction
of change from TNF-� to TNF-� plus ASA and TGZ treatment
groups, and the ACS1 term denotes the value of the normalized
expression level of the gene. A positive final score indicates a
compound that may be more similar to the vehicle (insulin sensitive)
and/or TNF-� plus ASA and TGZ (insulin resensitized) treatment
groups, and a negative final score denotes a compound acting more
like the TNF-� (insulin resistant) treatment group. The compounds
were ranked by this GES score. Data were analyzed with SPSS.
The Kruskal-Wallis nonparametric test was used to determine
which compound families had mean GES scores that were statis-
tically different from the TNF-� and TNF-� plus ASA and TGZ
treatment groups. P values were adjusted for multiple comparison
testing with the Bonferroni correction. P � 0.05 was considered
significant.

Intact Cell GLUT4 Translocation Assay

3T3-L1 fibroblasts were infected at 50% confluence with retrovirus
from Plat-E packaging cells transfected with hemagglutinin (HA)-
tagged GLUT4 in the replication-incompetent retroviral vector pB-
ABE puro as detailed previously (15). Puromycin (2 �g/ml) selection
was placed on cells 48 h after infection, and cells were induced to
differentiate as described above. Forty-eight hours before the trans-
location assay, adipocytes were seeded into gelatin-coated black-wall
clear-bottom 96-well plates (BD Biosciences, North Ryde, Australia),
and then 24 h before the assay cells were treated with each compound
at 10 �M in serum-free DMEM containing 0.2% (wt/vol) RIA-grade
BSA. On the day of the translocation assay, cells were incubated in
the absence or presence of insulin (0.5 or 200 nM) in DMEM (serum-
and bicarbonate free) containing 0.2% RIA-grade BSA and 0.02 M
HEPES, pH 7.4 for 20 min at 37°C. The percentage of HA-tagged
GLUT4 at the cell surface was measured and calculated as previously
described (15, 20). Data were tested for normality of distribution with
the Kolmogorov-Smirnov test and analyzed with unpaired Student’s
t-test with two-tailed distribution. Data were considered significant at
P � 0.05.

Human Study

Gene expression profiles were generated on lymphocyte samples
from participants in the San Antonio Family Heart Study (SAFHS),
which investigates the genetics of cardiovascular disease in Mexican
Americans (28). Peripheral blood samples, with subsequent lympho-
cyte preparation, were obtained in the morning after an overnight fast.
High-quality RNA was obtained from 1,240 individuals. Most of
these individuals (89%) are members of 30 extended families, with
10–87 phenotyped individuals spanning up to 4 generations of each
family. Individual families were ascertained through a single adult
proband from the Mexican American community, independent of
phenotype. The sample contains 506 men (40.8%) and 734 women
(59.2%) with a mean age of 39.3 yr (ranging from 15 to 94 yr). This
data set includes anthropometric measurements [such as body mass
index (BMI)], insulin sensitivity measures (oral glucose tolerance
test), and standard blood chemistry parameters including levels of
plasma glucose, insulin, and lipids. The Institutional Review Board of
the University of Texas Health Science Center at San Antonio ap-
proved all procedures and research. Informed written consent was
obtained from each participant, and the study conforms to the stan-
dards outlined by the Declaration of Helsinki. Analyses of the samples
from the SAFHS were approved by the Deakin University Human
Research Ethics Committee in accordance with the National Health
and Medical Research Council of Australia (NH&MRC) National
Statement on Ethical Conduct in Human Research.

Lymphocyte profiling and statistical analyses. Genomewide tran-
scriptional profiles were generated with Illumina Sentrix Human
Whole Genome (WG-6) Series I BeadChips and the Illumina Bea-
dArray 500GX Reader (14). The identification of expressed tran-
scripts and the standardization steps that were used to make the
expression values comparable across individuals and across tran-
scripts have been described in detail elsewhere (14). The raw and
normalized gene expression values of all 19,648 analyzed transcripts
are available under accession number E-TABM-305. To represent
each individual’s GES score, the same formula as above was used to
determine the standardized expression values of each of the five
GES genes as a single score. Using the information collected in the
SAFHS, we then looked for a relationship between individuals’
GES scores with fasting insulin and glucose levels and HOMA_IR
(homeostasis model of assessment for insulin resistance based on
insulin and glucose) using Pearson’s correlation. All statistical
analyses were carried out with SPSS, and P values were corrected
for multiple comparison with a conservative Bonferroni correction.
Correlation was considered significant at the 0.01 level (2 tailed).

RESULTS

Identification of a Five-Gene GES That Discriminates
Between Insulin-Resistant and Insulin-Resensitized States

The use of the cell model allowed us to define the cause of
insulin resistance (inflammation based) in this typically multi-
factorial pathology in individuals. After exposure of 3T3-L1
adipocytes to 3 ng/ml TNF-� for 72 h, insulin-stimulated
2-DOG uptake was reduced by 35% (P � 0.001 compared with
insulin alone, n � 6; Fig. 1B). Treatment with 5 mM ASA and
10 �M TGZ during the final 24 h of the TNF-� treatment
reversed the impairment in insulin-stimulated 2-DOG uptake
by 28% (P � 0.01 compared with TNF-� alone, not significant
compared with insulin alone; n � 6; Fig. 1B). The viability of
the cells, as assessed by thiazolyl blue tetrazolium blue (MTT),
remained unchanged with any of the treatments (n � 3, data
not shown). Subsequent microarray analysis of vehicle (insulin
sensitive)-, TNF-� (insulin resistant)-, and TNF-� plus ASA
and TGZ (insulin resensitized)-treated samples (n � 20 per
treatment group) identified 3,325 genes with evidence of dif-
ferential expression in TNF-�-treated compared with vehicle-
treated adipocytes (nominal P � 0.01). The TNF-�-induced
change in expression of 1,022 of these genes was reversed after
treatment with ASA and TGZ (nominal P � 0.01). This set of
1,022 genes was subjected to a Bayesian model selection
procedure coupled with Bayesian model averaging to produce
a five-gene GES that had a predictive power of 93% to
discriminate between the insulin-resistant and insulin-resensi-
tized states and, accordingly, was selected to be the TNF-�-
based GES. These genes were identified as acyl-CoA syn-
thetase 1 (ACS1), six transmembrane epithelial antigen of the
prostate 4 (STEAP4), S-phase kinase associated protein 1A
(Skp1a), pyruvate kinase muscle 2 (PKM2), and CD63 antigen
(CD63) (see Table 2).

Microarray data revealed that expression of four of the five
genes was increased by 1.4- to 2.7-fold after TNF-� treatment
(STEAP4, PKM2, Skp1a, and CD63) while one gene (ACS1)
had decreased expression by 60% relative to vehicle (Fig. 2A).
TNF-� down- and upregulation of ACS1 and STEAP4 mRNA
levels in adipocytes, respectively, have been reported previ-
ously (30, 48). To our knowledge, there have been no reports
of direct TNF-� regulation of PKM2, Skp1a, and CD63 tran-
scription in adipocytes. Each of the five genes was significantly
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different in level of gene expression between the vehicle- and
TNF-�-treated states and between the TNF-�- and TNF-� plus
ASA and TGZ-treated samples (P � 0.005, Fig. 2A). Expres-
sion of STEAP4, PKM2, and CD63 genes remained signifi-
cantly different between vehicle and TNF-� plus ASA and
TGZ treatments (P � 0.002), indicating only partial reversal of
TNF-� effects by the insulin-sensitizing agents, while they
fully restored ACS1 and Skp1a gene expression back to vehicle
levels (see Fig. 2A). The change in expression for each gene
was confirmed by qPCR (see Fig. 2B). Expression levels of all
genes remained significantly different between vehicle and
TNF-� treatments and between TNF-� and TNF-� plus ASA
and TGZ treatments (P � 0.05).

Use of TNF-�-Based GES Screen to Identify Known and
New Insulin Sensitizers

After the identification of the GES, we investigated the
ability of the GES to identify agents with potential insulin-
sensitizing properties. A compound library was screened in
3T3-L1 adipocytes with the TNF-�-based GES, in which the
gene expression levels of the five GES genes were multiplexed
and quantified with Sequenom’s MALDI-TOF-based quantita-
tive gene expression analysis system. The aim of the screen
was to identify compounds that regulated the expression of the
five-gene GES to resemble most closely the expression levels
observed in the insulin-resensitized cells, as this is likely to
indicate that these cells have restored insulin sensitivity. Of the
1,120 compounds screened, data from 852 compounds passed
quality control. As detailed under EXPERIMENTAL PROCEDURES, a
formula was developed to combine the expression levels of
each of the five GES genes, the direction of change, and the
relative contribution that each gene made to the predictive
power of the GES into a single number, and this was termed
the “GES score.” Compounds were ranked highest to lowest
based on each compound’s GES score. A compound with a
positive GES score may indicate similarity to the insulin-
resensitized treatment group, and, conversely, a negative score
may highlight a compound acting more like the insulin-resis-
tant treatment group. To determine whether the GES screen
enriched for compounds with insulin-sensitizing properties, the
top �10% ranked compounds from the screen were tested for
their ability to affect GLUT4 translocation to the plasma
membrane of 3T3-L1 adipocytes in the presence of submaxi-
mal (0.5 nM) insulin. We utilized the ELISA-based HA-tagged
GLUT4 translocation assay for secondary screening of the
compounds because this assay was amenable to a high-content
screening platform, in contrast to the radioactive 2-DOG up-
take assay. Cells were incubated with compounds at 10 �M for
24 h before the measurement of insulin-stimulated HA-tagged
GLUT4 translocation. Controls in the HA-tagged GLUT4
translocation assay included 24-h incubation of 10 �M TGZ or
5 mM ASA alone. The percent increases over 0.5 nM insulin
alone were as follows (means 	 SE): 10 �M TGZ, 70 	 20%;
5 mM ASA, 98 	 17% (P � 0.05, n � 8). Of the 82
compounds tested, 57 compounds (�70%) were found to
increase GLUT4 translocation to the plasma membrane in the
presence of submaximal insulin by an average of 51 	 5% over
0.5 nM insulin alone (see Table 3).

As an initial proof of concept and to assess plate-to-plate
variation, a total of 30 compounds with a GES that most
closely matched the insulin-resensitized cells within the same
96-well plate (14 plates in total, n � 2 or 3 compounds/plate)
from the GES screen were subjected to 2-DOG uptake analysis
in order to determine their potential insulin-sensitizing effects.

Table 2. Identity of the 5 genes that comprise the TNF-�-based GES

Gene Name NCBI Reference No. Proposed Function

ACS1/FACL2/palmitoyl-CoA ligase NM_007981 Fatty acid transport and metabolism (39)
CD63 Antigen NM_007653 Cell adhesion and motility (25)
STEAP4/TIARP/STAMP2 NM_054098 Iron/copper reductase; metabolic homeostasis regulator (33, 49)
Skp1a NM_011543 Proubiquination; cell cycle regulator (34)
PKM2 NM_011099 Aerobic glycolysis; tumorigenesis (10)

Fig. 2. Expression profiling of the TNF-�-based gene expression signature
(GES). Microarray expression (A) and quantitative real-time PCR (qPCR)
analysis (B) of the 5-gene GES in vehicle-treated (Veh), TNF-�-treated (TNF),
and TNF-� � TGZ and ASA-treated (TTA) 3T3-L1 adipocytes are shown.
Gene expression values are normalized to vehicle-treated cells (set at 1.0).
Data are represented as means 	 SE; n � 20 (A) or 5 (B) per treatment.
Statistical analyses were performed with unpaired Student’s t-test (A) or 1-way
ANOVA with multiple testing correction with Tukey HSD (B). *P � 0.05
compared with Veh; #P � 0.05 compared with TNF.
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Table 3. Validation of top 10% ranked compounds from TNF-�-based GES screen with GLUT4 translocation assay

GES Score Compound Name Known Mechanism GLUT4 Ratio

6.255 Indomethacin NSAID 1.15
3.015 Alprenolol hydrochloride �-Adrenergic antagonist 1.42
2.965 Nomegestrol acetate Progestogens steroid 1.05
2.627 Mesalamine NSAID 1.15
2.397 �-Santonin NSAID 1.28
2.080 Hydrochlorothiazide Carbonic anhydrase inhibitor 1.77
2.038 Bemegride GABA antagonist 1.11
2.022 Articaine hydrochloride Sodium channel blocker 0.86
1.916 Amiloride hydrochloride dihydrate Sodium channel blocker 2.28
1.846 Meprylcaine hydrochloride Serotonin antagonist 1.64
1.816 Tacrine hydrochloride hydrate Cholinesterase inhibitor 0.44
1.765 Clidinium bromide Cholinergic antagonist 1.11
1.674 Quinic acid Sodium channel blocker 1.34
1.665 Viomycin sulfate Antibiotic 1.13
1.640 Niacin Vitamin 1.74
1.637 Ketanserin tartrate hydrate Serotonin antagonist 1.87
1.597 Levodopa Tyrosine aminotransferase inhibitor 2.43
1.592 Glutethimide, para-amino Cytochrome P-450 inhibitor 1.18
1.589 Oxaprozin NSAID 1.19
1.452 Myosmine Cholinergic agonist 0.47
1.446 Sulfathiazole Sulfamide antifolate 1.16
1.429 Nafcillin sodium salt monohydrate �-Lactam 0.38
1.406 Glycopyrrolate Cholinergic antagonist 1.28
1.389 Amprolium hydrochloride Thiamine transport inhibitor 1.64
1.362 Natamycin Aminoglycoside 1.34
1.350 Pivmecillinam hydrochloride �-Lactam 1.40
1.331 Minaprine dihydrochloride Cholinesterase inhibitor 1.60
1.330 (R)-propranolol hydrochloride �-Adrenergic antagonist 1.24
1.300 Minocycline hydrochloride Aminoglycoside 0.54
1.240 Tomatidine Cholinesterase agonist 0.89
1.215 Benoxinate hydrochloride Sodium channel blocker 2.04
1.203 Amrinone Phosphodiesterase inhibitor 0.26
1.165 Tolnaftate Antifungal 1.99
1.124 Acemetacin NSAID 0.85
1.102 Epicatechin-(
) Lipoxygenase inhibitor 0.76
1.083 Bisoprolol fumarate �-Adrenergic antagonist 0.60
1.060 Promethazine hydrochloride Cholinergic antagonist 0.90
1.040 Nizatidine Histamine antagonist 0.85
1.037 Trifluoperazine dihydrochloride Dopamine antagonist 0.65
1.022 Hexamethonium dibromide dihydrate Cholinergic antagonist 1.86
0.996 Cefazolin sodium salt �-Lactam 1.33
0.987 Amethopterin (R, S) Folic acid antimetabolite 2.39
0.979 Oxethazaine Sodium channel blocker 1.96
0.975 Benzamil hydrochloride Sodium channel blocker 0.77
0.975 Avermectin B1 GABA antagonist 0.93
0.971 Esculin hydrate Apoptosis inhibitor 1.61
0.966 Sertaconazole nitrate Steroid synthesis inhibitor 1.40
0.956 Ronidazole Antibiotic 1.17
0.944 Butirosin disulfate salt Aminoglycoside 0.84
0.940 Hydroquinine hydrobromide hydrate Phospholipid synthesis inhibitor 1.25
0.938 Mevalonic-D, L acid lactone HMG-CoA reductase inhibitor 1.42
0.922 Cephalosporanic acid, 7-amino �-Lactam 1.12
0.913 Urapidil hydrochloride �-Adrenergic antagonist 2.28
0.913 Piperidolate hydrochloride Cholinergic antagonist 1.71
0.908 Dubinidine Alkaloid 1.13
0.907 Cefuroxime sodium salt �-Lactam 0.86
0.902 Rauwolscine hydrochloride �-Adrenergic antagonist 0.70
0.886 Benfotiamine Vitamin 0.73
0.871 Pheniramine maleate Histamine antagonist 1.66
0.869 Vitamin K2 Vitamin 1.32
0.866 Caffeic acid Lipoxygenase inhibitor 1.65
0.860 Thioridazine hydrochloride Calcium channel blocker 1.70
0.858 Suxibuzone NSAID 0.90
0.856 Isoflupredone acetate Glucocorticoid steroid 1.19
0.847 Dibucaine Sodium channel blocker 1.44
0.846 Pyridoxine hydrochloride Vitamin 1.40
0.835 Tremorine dihydrochloride Cholinergic agonist 1.51
0.832 Mepenzolate bromide Cholinergic antagonist 0.76

Continued
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3T3-L1 adipocytes were incubated for 24 h with each com-
pound before performance of 2-DOG uptake assays in the
presence or absence of submaximal insulin (0.5 nM for 30
min). Sixty-three percent of the 30 selected compounds from
the GES screen increased insulin-stimulated glucose uptake by
approximately twofold compared with 0.5 nM insulin alone
(P � 0.03, n � 2) (Supplemental Fig. S1).1

The ranked compounds were broadly grouped into classes as
determined by information on their molecular or therapeutic
mechanism gained from database searches or by their structural
features. Forty-two compound classes with at least five mem-
bers were identified, and the data from the GES screen were
represented as the mean GES score for each class and ranked
(see Table 4). The mean GES score for the three control groups
were as follows (means 	 SE): vehicle (insulin sensitive), 1.758 	
0.373; TNF-� plus TGZ and ASA (insulin resensitized), 0.043 	
0.097; and TNF-� (insulin resistant), 
0.318 	 0.069. Furthermore,
each group was statistically different from the others (P �
0.001, n � 29–57/group) (see Table 4). Apoptosis inhibitors,
�-adrenergic antagonists, steroid synthesis inhibitors, nonste-
roidal anti-inflammatory drugs (NSAIDs), vitamins, cholines-
terase inhibitors, �-adrenergic antagonists, sodium channel
blockers, �-lactams, and sulfamide antifolates had significantly
increased GES scores compared with the TNF-� (insulin re-
sistant) treatment group (P � 0.05, n � 5–38/family), suggest-
ing that these families may contain compounds with potential
insulin-sensitizing properties. Only glucocorticoids and �-ad-
renergic agonists scored significantly lower than the TNF-�
treatment group (P � 0.05, n � 13–20/family). Similar to the
TNF-� treatment group, the glucocorticoids, �-adrenergic ago-
nists, progesterone steroids, and topoisomerase inhibitors
scored significantly lower than the TNF-� plus TGZ and ASA
(insulin resensitized) treatment group (P � 0.05, n � 8–20/
family). Together, these data highlight the utility of the GES as
a primary screen to identify compounds with insulin-sensitiz-
ing properties in vitro.

Use of TNF-�-Based GES to Characterize an
Insulin-Resistant Subgroup of Individuals

We analyzed a global human gene expression data set to
determine whether the in vitro-derived TNF-�-based GES had
biological relevance in vivo. The profiling was undertaken in
lymphocytes as part of the SAFHS (28), which mapped the
expression levels of 47,289 transcripts in 1,240 individuals
from 42 extended family pedigrees with Illumina bead-based
technology (14). The frequency of diabetes in this population
was 15.4%. The characteristics of the individuals were as
follows (means 	 SD): BMI, 29.3 	 6.6 kg/m2 (n � 1,225);
fasting glucose, 100.6 	 43.8 mg/dl (n � 1,240); and fasting
insulin, 16.2 	 19.1 U/ml (n � 1,223). We detected expression
of the five genes comprising the TNF-�-based GES in the
human lymphocyte data set. We then calculated a GES score as
described above and looked for relationships between an indi-
vidual’s GES score and his/her phenotypic characteristics (see
Fig. 3). After normalization for the effects of age, a higher
degree of insulin resistance was observed in the individuals
with a low GES score (most similar to the TNF-�-induced
profile of the GES), as measured by their fasting plasma insulin
levels (� � 
0.104, n � 1,035; Fig. 3B) and HOMA_IR (� �

0.092, n � 1,223; Fig. 3A) (P � 0.001). On the basis of GES
score, there was no statistically significant correlation with
fasting glucose levels (see Fig. 3C), suggesting that the GES
correlates predominantly with insulin resistance rather than
diabetes. After the exclusion of individuals with diabetes, the
correlation of GES score with insulin resistance remained
equivalent for fasting plasma insulin levels (� � 
0.102, n �
1,025) and HOMA_IR (� � 
0.106, n � 1,035) (P � 0.001).
No significant correlation was observed with any other clinical
trait including BMI (Fig. 3D) or plasma levels of triglycerides,
total cholesterol, and HDL (data not shown). This observa-
tion is consistent with the GES representing an insulin-
resistant phenotype in this study population. Significantly,
the same GES used above to screen for compounds with
insulin-sensitizing properties has the ability to stratify indi-
viduals according to their insulin resistance status.

1 Supplemental Material for this article is available online at the Journal
website.

Table 3.—Continued

GES Score Compound Name Known Mechanism GLUT4 Ratio

0.832 Enilconazole Steroid synthesis inhibitor 0.47
0.829 (
)-Quinpirole hydrochloride Dopamine antagonist 1.25
0.826 (S)-(
)-cycloserine Antibiotic 1.12
0.823 Methazolamide Carbonic anhydrase inhibitor 1.24
0.823 Cefsulodin sodium salt �-Lactam 1.11
0.812 Bucladesine sodium salt Adenylate cyclase modulator 0.96
0.806 Benzbromarone Uric acid uptake inhibitor 1.52
0.786 Sulfabenzamide Sulfamide antifolates 1.16
0.773 Prochlorperazine dimaleate Cholinergic antagonist 1.73
0.772 Papaverine hydrochloride Phosphodiesterase inhibitor 0.93
0.769 Raloxifene hydrochloride Linear amine 1.41
0.766 Pyrimethamine Folic acid antimetabolite 2.91
0.759 Penbutolol sulfate �-Adrenergic agonist 1.17
0.741 Nortriptyline hydrochloride Norepinephrine uptake inhibitor 1.29

Ranking by the GES score for each compound from the TNF-�-based GES screen is shown. GLUT4 ratio for each compound represents the fold change
compared with 0.5 nM insulin alone (set at 1.0). Controls in the hemagglutinin HA-tagged GLUT4 translocation assay include 20-min incubation of 0 nM and
200 nM insulin alone and 24-h incubation of 10 �M troglitazone (TGZ) or 5 mM aspirin (acetylsalicylic acid, ASA). The fold changes compared with 0.5 nM
insulin alone (set at 1.0) (i.e., GLUT4 ratio) were as follows (means 	 SE): 0 nM insulin, 0.58 	 0.04 (P � 0.001, n � 30); 200 nM insulin, 1.67 	 0.14 (P �
0.001, n � 30); 10 �M TGZ, 1.70 	 0.20 (P � 0.05, n � 8); and 5 mM ASA, 1.98 	 0.17 (P � 0.05, n � 8). NSAID, nonsteroidal anti-inflammatory drug;
GABA, 
-aminobutyric acid; HMG-CoA reductase, 3-hydroxy-3-methylglutaryl-CoA reductase.
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DISCUSSION

In the present study, we have described the generation of a
novel GES from a cell model to discriminate between “insulin-
resistant” and “insulin-resensitized” states. The GES approach
employed an unbiased selection of genes that were the most
statistically different between insulin-resistant and insulin-
resensitized cells. We have used these tools to establish the first
compound library screening using a GES to identify insulin-
sensitizing agents. This approach could be applicable to any
other metabolic disease that can be modeled adequately in cell
culture. In addition, the cell culture-derived GES was detected
in the mRNA expression patterns of human lymphocytes, and
individuals with more severe insulin resistance were identified
on the basis of their GES score. These observations provide

preliminary evidence that GES technology can potentially
differentiate insulin resistance status in patients and be used to
screen for compounds with insulin-sensitizing properties, pro-
viding the potential for development of personalized medicine
for patients with type 2 diabetes.

Our results using the TNF-�-based GES to screen a com-
pound library for agents able to reverse insulin resistance are
promising. The GES was able to identify individual com-
pounds and classes of compounds with documented in vitro
and in vivo insulin-sensitizing effects that scored similarly to
the insulin-resensitized GES. In other words, the compounds
were able to mimic the GES gene expression changes induced
by ASA and TGZ. These classes of compounds include the
NSAIDs, �-adrenergic antagonists, steroid synthesis inhibitors,

Table 4. Ranking of compound families by TNF-�-based GES

Drug Class GES Score n
P Value Compared

with TNF
P Value Compared

with TTA

Vehicle 1.758 	 0.373 55 0.000 0.000
Apoptosis inhibitors 0.510 	 0.172 5 0.003 0.020
�-Adrenergic antagonists 0.353 	 0.215 17 0.000 0.274
Steroid synthesis inhibitors 0.323 	 0.108 11 0.001 0.364
Norepinephrine release inhibitors 0.247 	 0.181 5 0.065 1.000
NSAIDs 0.231 	 0.222 38 0.009 1.000
Vitamins 0.186 	 0.368 10 0.046 1.000
Sulfonylureas 0.168 	 0.234 5 0.149 1.000
Cholinesterase inhibitors 0.157 	 0.211 13 0.020 1.000
�-Adrenergic antagonists 0.153 	 0.101 18 0.003 1.000
Sodium channel blockers 0.097 	 0.174 29 0.018 1.000
�-Lactams 0.083 	 0.155 26 0.016 1.000
GABA antagonists 0.067 	 0.259 13 0.110 1.000
Sulfamide antifolates 0.052 	 0.150 20 0.035 1.000
TTA 0.043 	 0.097 29 0.000 1.000
Lipoxygenase inhibitors 0.018 	 0.166 16 0.096 1.000
Dopamine antagonists 0.014 	 0.264 11 0.243 1.000
Carbonic anhydrase inhibitors 0.007 	 0.290 11 0.287 1.000
Antibiotics 
0.003 	 0.213 13 0.211 1.000
Cholinergic agonists 
0.004 	 0.139 19 0.090 1.000
Cholinergic antagonists 
0.028 	 0.097 62 0.043 1.000
Calcium channel blockers 
0.061 	 0.197 20 0.335 1.000
Estrogen steroids 
0.099 	 0.184 8 0.813 1.000
Phosphodiesterase inhibitors 
0.126 	 0.289 12 0.891 1.000
Na�-K�-ATPase inhibitors 
0.128 	 0.252 5 1.000 1.000
Histamine antagonists 
0.141 	 0.137 34 0.564 0.711
Serotonin antagonists 
0.150 	 0.288 14 1.000 1.000
Dopamine agonists 
0.152 	 0.173 7 1.000 1.000
Serotonin agonists 
0.152 	 0.175 15 0.900 0.795
Linear amines 
0.163 	 0.232 10 1.000 0.917
Topoisomerase inhibitors 
0.168 	 0.208 9 1.000 0.011
ACE inhibitors 
0.177 	 0.442 6 1.000 1.000
Aminoglycosides 
0.192 	 0.187 26 1.000 0.545
Monoamine oxidase inhibitors 
0.199 	 0.229 14 1.000 0.604
Nucleoside antimetabolites 
0.220 	 0.179 13 1.000 0.442
Detergents 
0.262 	 0.087 6 1.000 0.558
Na�/Cl
 transport inhibitors 
0.307 	 0.312 7 1.000 0.398
TNF 
0.318 	 0.069 57 1.000 0.000
Contrast agents 
0.320 	 0.144 11 1.000 0.151
�-Adrenergic agonists 
0.334 	 0.212 13 1.000 0.137
Potassium channel blockers 
0.336 	 0.514 6 1.000 0.464
Progesterone steroids 
0.483 	 0.163 8 1.000 0.038
GABA agonists 
0.516 	 0.322 5 1.000 0.099
�-Adrenergic agonists 
0.677 	 0.237 13 0.003 0.020
Glucocorticoid steroids 
0.736 	 0.193 20 0.025 0.000

GES score values are means 	 SE. Ranking of the average GES score for each compound family is shown. The insulin-sensitive vehicle, insulin-resensitized
TNF-� � TGZ and ASA (TTA), and insulin-resistant TNF-� alone (TNF) treatment groups are also included as controls. To determine which compound families
had mean GES scores statistically different from the TNF and TTA treatment groups, the Kruskal-Wallis nonparametric test was used. P values were adjusted
for multiple comparison testing with the Bonferroni correction. P � 0.05 was considered significant. ACE, angiotensin-converting enzyme.
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vitamins, cholinesterase inhibitors, and sodium channel block-
ers (23, 40, 43, 44, 50, 51). For example, higher-than-conven-
tional doses of NSAIDs have been shown to lower plasma
glucose levels in individuals with type 2 diabetes (6, 31). The
mechanism(s) of the glucose-lowering action of these com-
pounds are varied and include inhibition of cyclooxygenase
(COX) activity and PGE2 production (indomethacin with a
GES score of 6.255; ibuprofen, 0.476) (17, 38), free radical
scavenger and antioxidant (mesalamine, 2.627) (5), inhibition
of NF-�B activation (niflumic acid, 0.614) (3, 4) and regulation
of peroxisome proliferator-activated receptors (PPARs) (indo-
methacin; dicoflenac, 0.347) (1, 24). The beta-blocker propran-
olol (1.330) has been reported to ameliorate TNF-�-induced
insulin resistance in rats (23). Likewise, further investigation
of the compounds comprising the class of sodium channel
blockers class revealed that many of them are known to
affect glucose and lipid metabolism, including quinic acid
(1.673), procaine (0.312), and disopyramide (0.126) (8, 16,
19, 44). The screen also identified compounds from families
such as the �-lactams, sulfamide antifolates, and carbonic
anhydrase inhibitors that have not been characterized in
terms of insulin-sensitizing actions. Conversely, families
that scored poorly (similar to the insulin-resistant GES),
such as glucocorticoids and �-adrenergic agonists, have previ-
ously been shown to induce insulin resistance both in vitro and in
vivo, such as prednisolone (
0.291), corticosterone (
2.722),
methyl prednisolone (
1.534), isoproterenol (
0.056), fenoterol
(
1.042), and terbutaline (
2.425) (18, 21, 22, 35–37, 45).
Further studies are now under way to confirm whether the novel
compounds and/or classes that scored similarly to the insulin-
resensitized GES have the ability to act as insulin-sensitizing
agents in vivo.

Gene expression profiling is being utilized increasingly in
human lymphocytes to help characterize the pathogenic states

of individuals. Such an application is appealing for several
reasons. It is relatively noninvasive and has the potential to
identify early stages of disease progression. GESs derived from
peripheral CD4� T cells were used to discriminate between
individuals with acute and chronic hepatitis B infection (46)
and as a detection marker for early stages of fibrosarcomas
(26). GES profiling in lymphocytes has also been employed as
a molecular marker to differentiate between Alzheimer’s dis-
ease patients and unaffected individuals (13). This particular
study demonstrated that multiple diseases, regardless of their
etiology, will activate overlapping pathways such as inflam-
mation, oxidative stress, and cholesterol biosynthesis, which
can be reflected in the gene expression profile of lymphocytes
and macrophages, making these cell populations useful to
monitor disease onset and progression (13). Our study extends
these important applications by demonstrating the utility of the
first GES to differentiate between levels of insulin resistance in
a human population using minimally invasive technology. The
critical point demonstrated in our study is that the same GES
used to subtype the patients was used to screen for insulin-
sensitizing compounds that could be targeted to that subtype of
insulin resistance. The outcome may provide a means for the
development of therapeutic intervention that is specific to the
disease subtype.

Despite the fact that the GES genes are identified statistically
and irrespective of their physiological functions (if known), we
have data to suggest that there is potential for these genes to
play a role in the development of insulin resistance. Since very
little was known about STEAP4 at the time and its gene
expression levels were induced approximately sevenfold by
TNF-� (Fig. 2B), we used small hairpin RNA (shRNA) tech-
nology to effectively silence endogenous STEAP4 mRNA
levels in 3T3-L1 adipocytes by �80% (P � 0.005, n � 6
compared with jumble shRNA-infected adipocytes) and found

Fig. 3. TNF-�-based GES-characterized indi-
viduals according to their level of insulin
resistance. Each individual’s GES score was
utilized to look for a relationship with the
clinical traits available in the San Antonio
Family Heart Study (SAFHS) data set with
Pearson’s correlation. A: the direction of the
correlation between quartiles of the age-stan-
dardized GES score and measures of insulin
resistance (HOMA_IR) is shown. B and C: the
relationship with levels of fasting plasma
insulin (B) and glucose (C) is shown; ob-
serve that the correlation with HOMA_IR is
based primarily on the insulin component.
D: no significant correlation was observed
with body mass index (BMI), although a
trend was noted. Data are represented as
means 	 SE. P values were corrected for
multiple comparison with a conservative
Bonferroni correction. *P � 0.001 com-
pared with the other 3 quartiles.
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that insulin-stimulated glucose transport was impaired in the
STEAP4 shRNA-infected cells by �25% (P � 0.05, n � 4)
(Supplemental Fig. S2). We hypothesize that this particular
gene was increased in response to TNF-� in order to protect the
cells against the TNF-� insult. A study was published by
Hotamisligil’s laboratory (49) just as we had established our
preliminary findings, demonstrating in vitro and in vivo that
STEAP4 is protective against inflammatory processes and
metabolic deregulation. The finding with STEAP4 highlights
an additional unforeseen utility of the TNF-�-based GES
approach: the potential identification of novel diabetes candi-
dates.

In the present study, we combined a cellular model with
clinical investigation and a high-content screen to tackle the
complex, heterogeneous nature of insulin resistance. Presently,
there are significant challenges to finding effective therapies
for the long-term management of type 2 diabetes. This study
offers proof of concept that the GES approach can be used for
the identification of optimized treatments in a multitude of
diseases with multifactorial etiology. The ability to both char-
acterize the heterogeneity of insulin resistance and specifically
target treatment of individuals according to their subtype(s) of
insulin resistance at clinical presentation has the potential to
promote the development of optimized medical treatments
(i.e., personalizing medicine) for patients with type 2 diabetes.
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