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Chronically elevated fatty acids contribute to insulin resistance through poorly defined mecha-
nisms. Endoplasmic reticulum (ER) stress and the subsequent unfolded protein response (UPR) have
been implicated in lipid-induced insulin resistance. However, the UPR is also a fundamental mech-
anism required for cell adaptation and survival. We aimed to distinguish the adaptive and dele-
terious effects of lipid-induced ER stress on hepatic insulin action. Exposure of human hepatoma
HepG2 cells or mouse primary hepatocytes to the saturated fatty acid palmitate enhanced ER stress
in a dose-dependent manner. Strikingly, exposure of HepG2 cells to prolonged mild ER stress
activation induced by low levels of thapsigargin, tunicamycin, or palmitate augmented insulin-
stimulated Akt phosphorylation. This chronic mild ER stress subsequently attenuated the acute
stress response to high-level palmitate challenge. In contrast, exposure of HepG2 cells or hepato-
cytes to severe ER stress induced by high levels of palmitate was associated with reduced insulin-
stimulated Akt phosphorylation and glycogen synthesis, as well as increased expression of glucose-
6-phosphatase. Attenuation of ER stress using chemical chaperones (trimethylamine N-oxide or
tauroursodeoxycholic acid) partially protected against the lipid-induced changes in insulin signal-
ing. These findings in liver cells suggest that mild ER stress associated with chronic low-level palmi-
tate exposure induces an adaptive UPR that enhances insulin signaling and protects against the
effects of high-level palmitate. However, in the absence of chronic adaptation, severe ER stress
induced by high-level palmitate exposure induces deleterious UPR signaling that contributes to
insulin resistance and metabolic dysregulation. (Endocrinology 153: 2164–2177, 2012)

Insulin action in the liver plays a central role in the reg-
ulation of whole-body energy homeostasis. Insulin sup-

presses hepatic gluconeogenesis and stimulates the liver to
store glucose in the form of glycogen. These actions are
initiated by the binding of insulin to its receptor, which
leads to the autophosphorylation of tyrosine residues and
the recruitment and activation of insulin receptor intra-
cellular substrates, such as insulin receptor substrate 1
(IRS1). This leads to the recruitment of PI3K (phosphati-
dylinositol 3-kinase) and ultimately to the activation of the
downstream protein kinase effector, Akt. Akt activation
then promotes glycogen synthesis and inhibits gluconeo-

genesis (1–3). Impaired insulin action in liver plays a cru-
cial part in the pathogenesis of metabolic disorders, such
as metabolic syndrome, nonalcoholic fatty liver disease,
and type 2 diabetes (4–7). Lipid oversupply is a likely
cause of obesity-associated hepatic insulin resistance (8).
Increased plasma fatty acids are associated with insulin
resistance in humans (9), and in vivo infusion of lipids
leads to impaired insulin signaling in rodents and humans
(8, 10–12). However, the underlying mechanisms by
which fatty acids impair insulin action are not fully un-
derstood. The suggested mechanisms include synthesis of
ceramide (13, 14), accumulation of diacylglycerol and as-
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sociated activation of novel protein kinase C (15, 16),
generation of reactive oxygen species (17), and activation
of the I�B kinase/nuclear factor-�B pathway (18). Re-
cently, endoplasmic reticulum (ER) stress has emerged as
a potential mechanism for hepatic insulin resistance. ER
stress is implicated in obesity-associated insulin resistance
in animals (19–22) and humans (23), and direct activation
of severe ER stress in Fao liver cells can impair insulin
signaling (19). However, whether ER stress is required for
fatty acid-mediated insulin resistance has not yet been
established.

ER stress is caused by various insults that lead to the
accumulation of misfolded proteins in the ER lumen.
Upon initiation of ER stress, cells activate a signaling cas-
cade known as the unfolded protein response (UPR). The
role of the UPR is both to alleviate the ER stress and,
paradoxically, to activate apoptosis, depending on the na-
ture and severity of the stressor (24). ER stress is sensed by
three transmembrane ER proteins: PERK (protein kinase
RNA-like ER kinase), ATF6 (activation transcription fac-
tor-6) and IRE1 (inositol requiring enzyme-1). In an in-
active state, the luminal domain of these proteins binds to
the ER chaperone BiP (GRP78). Under stress conditions,
BiP dissociation from the sensor proteins leads to their
activation (25). PERK and IRE1 are activated by dimeriza-
tion and autophosphorylation, whereas ATF6 translo-
cates from the ER to the Golgi where it is activated by
proteolysis, releasing an active transcription factor (26–
28). Activated PERK phosphorylates eIF2� (eukaryotic
initiation factor 2 � subunit), which leads to the inhibition
of protein translation and the production of the transcrip-
tion factor ATF4. Phosphorylation of IRE1 activates its
endoribonuclease activity, which leads to splicing of
XBP1 (X-box binding protein 1) mRNA and the transla-
tion of a mature XBP1 transcription factor. These tran-
scription factors facilitate adaptation to ER stress by in-
creasing the protein-folding capacity of the ER via up-
regulation of chaperones, foldases, and components of the
ER-associated degradation pathway. However, there are
also multiple apoptotic pathways emanating from UPR
activation, including ATF4-mediated transcriptional ac-
tivation of C/EBP homologous protein (CHOP) (29) and
IRE1-mediated activation of JNK (30).

Recent studies have demonstrated a critical influence of
chronic low-level ER stress on the subsequent UPR sig-
naling induced by an acute ER stress challenge (31). The
suggestion from these studies is that the nature of the cellular
response to an ER stress insult depends on the underlying
status of the adaptive UPR. This may have important impli-
cations for cell function and dysfunction, because the UPR
has been proposed to play both physiological and patho-
physiological roles in several cell systems (32, 33). Whether

the adaptive UPR induced by chronic low-level ER stress
influences insulin action has not been tested.

In this study, we investigated the effects of ER stress on
insulin action in liver cells. We examined the effects of
variable periods of both mild and severe ER stress on in-
sulin signaling to recapitulate the broad range of condi-
tions that are likely to be encountered physiologically. Our
studies found that mild and severe ER stress activation
differentially regulates insulin signaling in hepatocytes:
severe ER stress was required for the insulin resistance
induced by the common saturated fatty acid, palmitate,
whereas chronic mild ER stress actually enhances insulin
signaling and protects against the deleterious effects of
palmitate. These studies provide novel insight into the in-
terface between the UPR and the insulin-signaling path-
way in liver cells.

Materials and Methods

Materials
Cell culture media, buffers, and antibiotics, as well as Nu-

PAGE reagents and gels, were from Invitrogen (Carlsbad, CA).
Fetal bovine serum (FBS) was from Thermo Scientific (Scoresby,
Victoria, Australia). Fatty acid-free BSA, sodium palmitate,
thapsigargin (Tg), tunicamicyn (Tm), trimethylamine N-oxide
(TMAO), tauroursodeoxycholic acid (TUDCA) were from Sig-
ma-Aldrich (St. Louis, MO). Insulin (Actrapid) was obtained
from Novo Nordisk Pharmaceuticals (Baulkham Hills, New
South Wales, Australia). Transfection reagent and ON-TAR-
GETplus SMARTpool small interfering RNA (siRNA) were pur-
chased from Dharmacon (Lafayette, CO). Antibody details are
provided in Supplemental Materials and Methods published on
The Endocrine Society’s Journals Online web site at
http://endo.endojournals.org.

Cell culture and treatments
HepG2 human hepatoma cells were maintained in MEM con-

taining 5.6 mM glucose, supplemented with 10% FBS, 100 U/ml
penicillin, and 100 �g/ml streptomycin. For short-term treat-
ments, cells were seeded at a density of 6 � 104 cells/cm2 and
grown in MEM supplemented with 10% FBS and 25 mM HEPES,
pH 7.5. Treatments were performed in medium containing 10%
FBS or 2% FBS before stimulation with insulin. For ER stress
induction, cells were incubated with Tg (1–50 nM) or Tm (50–
1000 ng/ml) for 8 to 24 h. Dimethylsulfoxide (DMSO) alone was
used as a control treatment. For lipid treatment, cells were in-
cubated in the presence of 100–750 �M palmitate coupled to
BSA, as described previously (34). Uncoupled BSA (0.9%) was
used in control conditions. Cells were treated with TMAO (50–
100 mM) or TUDCA (0.5 mg/ml) to alleviate ER stress. For
siRNA transfection, HepG2 cells were transfected with XBP1
ON-TARGETplus SMARTpool siRNA or Non-Targeting
siRNA using DharmaFECT 4 (Dharmacon) according to the
manufacturer’s instruction. For chronic experiments, cells were
seeded at a density of 4–6.5 � 104 cells/cm2 and grown in MEM
supplemented with 10% FBS, 50 U/ml penicillin, 50 �g/ml strep-

Endocrinology, May 2012, 153(5):2164–2177 endo.endojournals.org 2165



tomycin, and 25 mM HEPES, pH 7.5. Cells were cultured for 3–6
d (one passage) in the presence of 2.5 nM Tg or 100 ng/ml Tm,
or for 3–8 d (one or two passages) in the presence of 100 �M

palmitate. DMSO or BSA (0.2%) alone were used as control
treatments. Medium was changed daily. In some experiments,
chronic treatments were followed by incubation with 750 �M

palmitate for 18 h in MEM containing 2% FBS before stimula-
tion with insulin.

Hepatocytes isolation, culture, and treatment
Primary hepatocytes were isolated from adult mice

(C57BL/6) by a modified previously described method (35). See
Supplemental Materials and Methods, for details. Procedures
were approved by the Garvan Institute/St.Vincent’s Hospital An-
imal Ethics Committee. Hepatocytes were seeded at a density of
7.5 � 104 cells/cm2 and grown in M199 medium supplemented
with 50 U/ml penicillin, 50 �g/ml streptomycin, 0.1% BSA, 2%
dialyzed FBS (Invitrogen, Carlsbad, CA), 100 nM dexametha-
sone, and 100 nM insulin. 4 h after seeding, the medium was
replaced with M199 medium supplemented with 50 U/ml pen-
icillin, 50 �g/ml streptomycin, and 100 nM dexamethasone.
When hepatocytes were kept in culture for more than 24 h before
treatment, 1 nM insulin was added to the medium. Cells were
treated with palmitate, TMAO, and TUDCA as described for
HepG2 cells. Cells were insulin starved for 18 h before insulin
stimulation.

Protein analysis
Protein was extracted in lysis buffer containing 50 mM HEPES

(pH 7.5), 150 mM NaCl, 1.5 mM MgCl2, 1 mM Na3VO4, 10 mM

Na4P2O7, 100 mM NaF, 1 mM EGTA, 1% (vol/vol) Triton �
100, 10% (vol/vol) glycerol, 0.2 mM phenylmethylsulfonyl flu-
oride, Complete Protease Inhibitor, and PhosSTOP Phosphatase
Inhibitor Cocktail Tablets (Roche Diagnostics). Total protein
concentrations were assessed using Bio-Rad Protein Assay (Bio-
Rad Laboratories, Hercules, CA). For IRS1 immunoprecipita-
tion, 0.8 �g IRS1 antibody was added in 500 �l lysis buffer
containing 400 �g total protein, and the samples were rocked
gently overnight at 4 C. The complexes were precipitated in the
presence of protein G-Sepharose (Invitrogen) for 1.5 h. Immu-
noprecipitated complexes were washed in lysis buffer and eluted
in 60 �l loading buffer (NuPAGE LDS Sample Buffer completed
with NuPAGE Reducing Agent, Invitrogen). After denaturation
(70 C for 10 min), samples were subjected to SDS-PAGE. Alter-
natively, total lysates or immunoprecipitation supernatants were
diluted in loading buffer and 10–30 �g of denatured proteins
were separated on NuPAGE gels. Western blotting was per-
formed as described previously (36). See Supplemental Materials
and Methods for details. Densitometry analysis was performed
using ImageJ software.

RNA analysis
Total RNA was extracted using the RNeasy mini kit, and

cDNA was synthesized using the QuantiTect Reverse Transcrip-
tion Kit according to manufacturer’s protocols (QIAGEN, Don-
caster, Victoria, Australia). For XBP1 mRNA splicing analysis,
fragments of spliced and unspliced XBP1 cDNA were amplified
by PCR and digested with PstI (New England Biolabs, Ipswich,
MA). The cDNA corresponding to the spliced form of XBP1
mRNA, which encode the active transcription factor, lacks the

PstI restriction site. Digested and undigested fragments were sep-
arated using 1.5% agarose gels and quantified by densitometry
using a ChemiDoc System and Quantity One software (Bio-Rad
Laboratories, Hercules, CA). The value obtained for spliced
XBP1 mRNA (undigested fragment) was expressed as a ratio of
the total XBP1 mRNA level (undigested � digested fragments)
for each sample. For quantitative gene expression analysis, real-
time PCR was performed using Power SYBR Green PCR Master
Mix (Applied Biosystems, Foster City, CA) and gene-specific
primers (Supplemental Table 1) on a 7900HT Real-Time PCR
System (Applied Biosystems). The values obtained for each spe-
cific gene were normalized to the control gene (RPS9 for HepG2
cell extracts and cyclophilin A for hepatocyte extracts).

Glycogen synthesis assays
HepG2 cells in six-well plates were incubated for 1 h in 1

ml/well of MEM supplemented with 25 mM HEPES (pH 7.5) con-
taining D-[U-14C]glucose (2�Ci/ml) (PerkinElmer,Waltham,MA).
Glycogen production was assayed as described previously (14). See
Supplemental Materials and Methods for details.

Statistical analysis
All values are given as means � SE. Statistical analyses were

performed using unpaired, two-tailed t test, one-sample t test, or
ANOVA with Bonferroni post hoc tests.

Results

Palmitate inhibits insulin-stimulated Akt
phosphorylation in liver cells

Chronic exposure of liver cells to elevated fatty acids,
particularly the saturated long-chain fatty acid, palmitate
(C16:0), leads to abnormalities in insulin receptor-medi-
ated signaling (17, 37). We examined the changes in in-
sulin receptor-mediated signaling induced by 18 h expo-
sure of human hepatoma HepG2 cells and mouse primary
hepatocytes to elevated palmitate. In control HepG2 cells,
acute insulin stimulation led to dose- and time-dependent
increases in tyrosine phosphorylation of insulin receptor
(Tyr 1162/1163) and IRS1 (Tyr 612) and serine phos-
phorylation of Akt (Ser 473) (Fig. 1A and Supplemental
Fig. 1, A and B). Palmitate treatment of HepG2 cells dose-
dependently reduced insulin-stimulated serine phosphor-
ylation of Akt (Fig. 1A) in a dose-dependent manner; 750
�M palmitate treatment reduced Akt phosphorylation in
response to 10 and 100 nM insulin stimulation by 65–
70%. In contrast, insulin receptor-mediated signaling up-
stream of Akt was not affected by palmitate pretreatment.
Insulin-stimulated tyrosine phosphorylation of insulin re-
ceptor and IRS1 were not altered after palmitate pretreat-
ment (Fig. 1A, Fig. 2, and Supplemental Fig. 1, A and B),
with the exception of a minor reduction in IRS1 (Tyr 612)
phosphorylation after 750 �M palmitate pretreatment at
the single maximal insulin dose of 100 nM insulin (Sup-
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plemental Fig. 1B). Total IR, Akt, and ERK1/2 levels were
unaltered after palmitate pretreatment, whereas IRS1 and
IRS2 levels were increased (Supplemental Fig. 2). Insulin-
stimulated serine phosphorylation of FoxO1 was not al-
tered after palmitate pretreatment (Fig 1A and Supple-
mental Fig. 1C), whereas ERK2 phosphorylation was
increased (Fig 1A and Supplemental Fig. 1D). These find-
ings suggest that 18 h exposure of HepG2 cells to elevated
palmitate induces a specific defect in insulin-stimulated

serine phosphorylation of Akt. A similar defect in insulin-
stimulated Akt phosphorylation was observed in mouse
primary hepatocytes treated with 500 or 750 �M palmitate
(Fig. 1B).

Palmitate activates ER stress signaling pathways in
HepG2 cells and mouse primary hepatocytes

The ER stress response has emerged as a potential sig-
naling pathway involved in obesity-associated insulin re-
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FIG. 1. Palmitate treatment inhibits insulin-stimulated phosphorylation of Akt in HepG2 cells and mouse primary hepatocytes. HepG2 cells (A) and
isolated mouse primary hepatocytes (B) were pretreated with either BSA alone (Control) or BSA coupled to palmitate (Palm, 250, 500, or 750 �M)
for 18 h before stimulation with insulin (Ins) as indicated (upper panels in A: 10 nM insulin for 5 or 15 min; lower panels in A: 1, 10, or 100 nM

insulin for 5 min; B: 10 nM insulin for 2 or 10 min). Western blot analyses were performed to compare changes in IRS1 (Tyr 612), Akt (Ser 473),
FoxO1 (Ser 256), and ERK1/2 MAPK phosphorylation (p). IRS1, Akt, FoxO1, and ERK1/2 levels were determined. �-Actin served as loading control.
Representative blots and quantification of phosphorylated Akt are shown. p-Akt levels were normalized for Akt levels and expressed as a
percentage (%) of the maximum (max) value in control. Values are means � SE from at least three independent experiments. *, P � 0.05; **, P �
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Endocrinology, May 2012, 153(5):2164–2177 endo.endojournals.org 2167



sistance (19). We found in HepG2 cells that direct activa-
tion of the ER stress response with two well-known ER
stress inducers, Tg and tunicamycin (Tm), leads to a re-
duction in insulin-stimulated IRS1 and Akt phosphoryla-
tion (Supplemental Fig. 3, A and C). We next tested
whether palmitate induces ER stress in our models. In
HepG2 cells, palmitate treatment led to the activation, in
a dose-dependent manner, of two arms of the ER stress
response as indicated by detection of ER stress markers
(Fig. 3). EIF2� phosphorylation was increased within 4 h
of palmitate treatment in HepG2 cells (Fig. 3, A and C).
CHOP mRNA levels were increased in HepG2 cells
treated with palmitate (750 �M) compared with control
(data not shown), whereas CHOP protein was only de-
tected in Tg- and Tm-treated cells (Fig. 3B). Palmitate
treatment increased the levels of phosphorylated IRE1
(Fig. 3, B and C) and spliced XBP1 mRNA (Fig. 3D) in a
dose-dependent manner. Interestingly, different patterns
of ER stress signaling activation were observed among the
three stressors (Fig. 3, B and D, and Supplemental Table
2). Tg and Tm treatments generated similar marked in-
creases in IRE1 phosphorylation (Fig. 3B), whereas XBP1

splicing was 42% lower after Tm (500 ng/ml) compared
with Tg (25 nM) treatment (Fig. 3C). Moreover, palmitate
(750 �M) and Tm (500 ng/ml) treatments led to similar
increases in XBP1 splicing (Fig. 3D) despite a difference in
IRE1 phosphorylation (Fig. 3B). Phosphorylated JNK
(Thr183/Tyr185) was increased after palmitate treatment
of HepG2 cells, as was cleaved caspase 3, a marker of
apoptosis (Fig. 4A). Phosphorylated JNK was also in-
creased after Tg treatment but was not altered after Tm
treatment (Supplemental Fig. 3B).

In mouse primary hepatocytes, palmitate treatment led
to dose-dependent activation of the PERK pathway, as
indicated by increased PERK phosphorylation and CHOP
expression (Fig. 4B). The IRE1 pathway was also activated
by palmitate, as indicated by increased levels of spliced
XBP1 mRNA (Fig. 4B). However, JNK phosphorylation
levels were not altered (Fig. 4B). Furthermore, we exam-
ined by real-time PCR the palmitate-regulated expression
of genes involved in the UPR in hepatocytes. Exposure to
palmitate induced step-wise increases in levels of mRNA
encoding the ER stress-inducible transcription factors
ATF3, ATF4, CHOP, and TRIB3. mRNA levels of the ER
chaperones BiP and Grp94 as well as the ER foldase Erp72
were also increased in hepatocytes exposed to 750 �M

palmitate. In contrast, EDEM1 and FKBP11 mRNA lev-
els were unchanged (Supplemental Fig. 4). These results
demonstrate, for the first time, the widespread up-regu-
lation of genes involved in the UPR in palmitate-treated
primary hepatocytes.

We next tested whether these changes induced by
palmitate were due to ER stress using the chemical chap-
erones trimethylamine N-oxide (TMAO, 100 mM), an os-
molyte that improves ER-folding capacity and reduces the
load of unfolded proteins in the ER (38), and taurour-
sodeoxycholic acid (TUDCA, 0.5 mg/ml), a bile acid de-
rivative that improves ER function (21, 39). Pretreatment
of HepG2 cells with TMAO attenuated palmitate-medi-
ated changes in ER stress markers, as evidenced by reduced
eIF2� and JNK phosphorylation as well as XBP1 mRNA
splicing (Fig. 4A). This was associated with reduced
cleaved caspase 3, suggesting that the attenuation of ER
stress protects against palmitate-induced apoptosis in
HepG2 cells. Pretreatment of mouse hepatocytes with
TUDCA attenuated palmitate-mediated ER stress, as in-
dicated by reduced PERK phosphorylation, CHOP ex-
pression, and XBP1 mRNA splicing (Fig. 4B). TUDCA
pretreatment of hepatocytes also significantly reduced the
palmitate-mediated changes in the expression of tran-
scription factors, chaperones, and foldases (Supplemental
Fig. 4). These data indicate that palmitate treatment in-
duces the UPR in HepG2 cells and primary hepatocytes in
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a dose-dependent manner and that pretreatment with two
different chemical chaperones attenuates palmitate-in-
duced ER stress.

ER stress activation is necessary for palmitate-
mediated inhibition of insulin signaling in liver
cells

The above studies demonstrate an association between
deleterious UPR signaling and lipid-induced insulin resis-
tance in liver cells, but whether ER stress activation makes
a necessary contribution to the insulin signaling defects
induced by palmitate has not yet been established. Here we
demonstrated that the attenuation of ER stress with
TMAO or TUDCA protected against the palmitate-me-
diated reduction in insulin-stimulated Akt phosphoryla-
tion in HepG2 cells (Fig. 5A and Supplemental Fig. 5A)
and in mouse hepatocytes (Fig. 5B). These studies provide
definitive evidence that ER stress activation is required for
mediating the deleterious effects of palmitate on insu-
lin-regulated Akt phosphorylation in liver cells. These
changes in Akt phosphorylation occurred without sig-

nificant alteration in IR or IRS1 phos-
phorylation, whereas ERK2 phos-
phorylation was partially restored
after TMAO treatment (Supplemen-
tal Fig. 5, B and C).

ER stress activation plays an
essential role in palmitate-
mediated impairment of insulin-
regulated glucose metabolism

To determine whether ER stress
makes a necessary contribution to
palmitate-mediated impairment of in-
sulin action, we assessed glycogen
synthesis and glucose-6-phosphatase
(G6PC) expression in HepG2 cells (Fig.
5, C and D). Palmitate pretreatment of
HepG2 cells led to inhibition of insulin-
stimulated glycogen synthesis (Fig. 5C).
This inhibitory effect of palmitate was
partially prevented after the attenua-
tion of ER stress with TMAO; insulin-
stimulated glycogen synthesis was in-
creased by 25% in HepG2 cells treated
with palmitate in combination with
TMAO compared with cells treated
with palmitate alone (Fig. 5C). In con-
trol HepG2 cells, insulin stimulation
led to the expected down-regulation of
G6PC mRNA expression by 70%. (Fig.
5D). Palmitate pretreatment led to in-
creased G6PC mRNA levels by 3.6-

and 6.5-fold in basal and insulin-stimulated conditions,
respectively. Attenuation of ER stress using TMAO par-
tially prevented the palmitate-mediated up-regulation of
G6PC mRNA levels; G6PC mRNA levels were reduced by
1.8-fold (basal) and 1.7-fold (insulin stimulated) in
HepG2 cells treated with palmitate in combination with
TMAO compared with cells treated with palmitate alone
(Fig. 5D). Attenuation of ER stress also partially prevented
the palmitate-mediated changes in SREBF1 and HMGCR
expression (Supplemental Fig. 6). SREBF1 encodes the
transcription factor sterol regulatory element-binding
protein 1c, a major regulator of lipid metabolic processes,
and HMGCR encodes 3-hydroxy-3-methylglutaryl-coen-
zyme A reductase, the rate-limiting enzyme for cholesterol
synthesis. These findings suggest that ER stress plays an
essential role in palmitate-mediated dysregulation of gly-
cogen synthesis and hepatocyte gene expression. Taken
together, the data demonstrate that the improvement in
insulin-stimulated Akt phosphorylation after attenuation
of ER stress in palmitate-treated cells is accompanied by
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the partial restoration of insulin-regulated glucose
metabolism.

XBP1 activation contributes to palmitate-mediated
inhibition of insulin signaling in HepG2 cells

To assess the role of XBP1 as a potential mediator of
palmitate-mediated inhibition of insulin signaling,
HepG2 cells were transfected with XBP1 siRNA or con-
trol siRNA. XBP1 siRNA transfection led to reduced
XBP1 expression and splicing compared with control
siRNA-transfected cells (Supplemental Fig. 7). This re-

sulted in partial restoration of insulin-
stimulated Akt phosphorylation in
palmitate-treated cells (Fig. 6A) and
partial prevention of the palmitate-me-
diated up-regulation of G6PC mRNA
levels (Fig. 6B). This evidence suggests
that the activation of XBP1 contributes
to lipid-induced insulin resistance.

Chronic mild ER stress is
associated with enhanced insulin
signaling in HepG2 cells

Previous studies examining the con-
tribution of ER stress to hepatic steato-
sis and insulin resistance have adopted
high pharmacological doses of ER
stress agents, Tg (300–450 nM) and Tm
(1–10 �g/ml) (21, 22, 40, 41). These
high doses induce severe perturbations
of ER function leading to the activation
of the pro-apoptotic UPR. However,
under physiological ER stress condi-
tions, the first manifestation of the UPR
is the activation of an adaptive response
that is crucial for cell survival (31). We
therefore examined the consequences
of chronic mild ER stress and the adap-
tive UPR on insulin signaling in HepG2
cells. To determine the optimal condi-
tions to model chronic mild ER stress,
we performed dose-response and time-
course analyses of ER stress markers
exposed to low levels of Tg (1–50 nM)
or Tm (0.1–1 �g/ml). Based on the ob-
servations of increased BiP expression
and IRE1 phosphorylation combined
with low levels of CHOP protein, we
adopted concentrations of 2.5 nM Tg
(Supplemental Fig. 8) and 100 ng/ml
Tm (data not shown) to conduct the fol-
lowing studies examining the effects of
mild ER stress. Importantly, incubation

of HepG2 with these low levels of Tg and Tm allowed cells
to proliferate and be passaged, whereas higher concentra-
tions led to diminished growth rate and increased cell
death.

We assessed the effects of chronic mild ER stress on
insulin signaling in HepG2 cells that were exposed for 6 d
(one passage) to low-level Tg and Tm treatment. Strik-
ingly, insulin-stimulated Akt phosphorylation was in-
creased in cells pretreated with low-level Tg and Tm com-
pared with the control (Supplemental Fig. 8).
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Chronic mild ER stress is associated with
protection against palmitate-induced insulin
resistance in HepG2 cells

We also assessed the effects of chronic mild ER stress on
the sensitivity of HepG2 cells to palmitate-mediated inhi-
bition of insulin-stimulated Akt phosphorylation. We
found that chronic mild ER stress leads to increased insu-
lin-stimulated Akt phosphorylation in HepG2 cells
treated with palmitate; insulin (100 nM)-stimulated Akt
phosphorylation was increased by 1.9-fold in cells that
had been pretreated with low-level Tg for 3 d (Fig. 7).
Thus, the findings suggest that chronic mild ER stress re-
duces the sensitivity of liver cells to palmitate-mediated
inhibition of insulin signaling.

Chronic low-level palmitate exposure induces mild
ER stress and enhanced insulin-stimulated Akt
phosphorylation in HepG2 cells

We next investigated the consequences of chronic low-
level palmitate exposure on ER stress activation in HepG2
cells. We used 100 �M palmitate, which allowed cell pro-
liferation for at least two passages. After an 8-d period of
exposure to low-level palmitate, XBP1 mRNA splicing
was significantly increased (Fig. 8A), but CHOP mRNA
(Fig. 8B) and protein (data not shown) levels were not
altered, suggesting the induction of mild ER stress. This
mild ER stress induced by chronic low-level palmitate was
associated with an attenuation of the severe ER stress re-

sponse induced by subsequent acute
high-level palmitate exposure; spliced
XBP1 and CHOP mRNA levels were
reduced in cells pretreated with low-
level palmitate followed by high-level
palmitate treatment compared with
cells treated with high-level palmitate
alone (Fig. 8, A and B). This suggests
that chronic mild ER stress induced by
low-level palmitate exposure protects
against the severe ER stress induced by
high-level palmitate.

We also assessed the effects of
chronic low-level palmitate exposure
on insulin signaling in HepG2 cells.
Strikingly, chronic exposure of HepG2
cells to low-level palmitate led to a
marked increase in insulin-stimulated
Akt phosphorylation (Fig. 8C); levels in
8-d-incubated cells were 2.5-fold
higher after 5 min insulin stimulation
(Fig. 8C). Furthermore, chronic low-
level palmitate exposure partially pro-
tected against the inhibitory effects of
acute high-level palmitate on insulin-

stimulated Akt phosphorylation (Fig. 8D). Together these
data suggest that mild ER stress induced by low-level
palmitate is associated with an adaptive response that par-
tially protects against the severe ER stress and insulin re-
sistance induced by high-level palmitate.

Discussion

UPR signaling emanating from ER stress has been impli-
cated in obesity-associated insulin resistance (19). How-
ever, chronic ER stress can also induce adaptations in UPR
signaling that are required for the normal differentiation
and maintenance of cell function. Our study examines the
effects of varying degrees and durations of ER stress on
hepatic insulin signaling. The main findings of this study
are that 1) exposure of liver cells to the saturated fatty acid
palmitate leads to specific inhibition of insulin-stimulated
Akt phosphorylation; 2) palmitate exposure leads to dose-
dependent activation of a comprehensive ER stress re-
sponse; 3) severe ER stress induced by palmitate is re-
quired for the accompanying insulin resistance; 4) chronic
mild ER stress induced by classic ER stressors or palmitate
leads to increased insulin-stimulated Akt phosphoryla-
tion; and 5) this chronic mild ER stress protects against the
deleterious effects of acute stressors on insulin signaling.
These findings demonstrate for the first time that the ef-

0

0.5

1.0

1.5

2.0

2.5

G
6P

C
 m

R
N

A
 e

xp
re

ss
io

n
(r

el
at

iv
e 

to
 b

as
al

 le
ve

l i
n 

co
nt

ro
l) 

Basal
+ Insulin

Ctl siRNACtl XBP1 

Palm - + +

*

**

††

†††

0 5 10 15

0

25

50

75

100

p-
A

kt
 (S

er
47

3)
 / 

A
kt

 le
ve

ls
(%

 o
f m

ax
 le

ve
ls

 in
 c

on
tro

l)

BSA + Ctl siRNA
Palm + Ctl siRNA
Palm + XBP1 siRNA

Time after insulin stimulation (min)

**
*

* †

A B 

FIG. 6. Inhibition of XBP1 activation partially protects against palmitate-mediated inhibition
of insulin-stimulated Akt phosphorylation and impairment of insulin-regulated glucose-6-
phosphatase expression. HepG2 cells were transfected with ON-TARGETplus SMARTpool
siRNA directed against XBP1 mRNA (XBP1 siRNA) or ON-TARGETplus Non-Targeting Pool
[control (Ctl) siRNA]. A, 48 h after transfection, cells were treated with either BSA alone or
BSA coupled to 500 �M palmitate (Palm) for 18 h and then stimulated with 10 nM insulin (Ins)
for 5 or 15 min. Western blot analysis was performed to compare changes in Akt (Ser 473)
phosphorylation. p-Akt levels were normalized for Akt levels and expressed as a percentage
(%) of the maximum value in control. Values are means � SE from three independent
experiments. B, Cells were pretreated with either BSA alone or BSA coupled to 500 �M

palmitate (Palm) for 26 h. For the last 8 h, cells were treated with 100 nM insulin. Total RNA
was extracted and reverse transcribed, and the levels of glucose-6-phosphatase mRNA were
quantified by real-time PCR. Results are means � SE determined from two independent
experiments, carried out in triplicate, and are expressed as fold change of basal mRNA levels
in control cells. *, P � 0.05; **, P � 0.01 vs. control cells; †, P � 0.05; ††, P � 0.01; †††,
P � 0.001 effect of XBP1 siRNA in palmitate-treated cells.

2172 Achard and Laybutt ER Stress and Hepatic Insulin Action Endocrinology, May 2012, 153(5):2164–2177



fects of ER stress on hepatic insulin action are critically
dependent not only on the nature and severity of the ER
stress insult, but also on the underlying status of the adap-
tive UPR.

Due to the inherent complexities of animal models, it is
difficult to determine the contribution of fatty acids to
hepatic insulin resistance or the mechanisms involved.
Our in vitro studies of human HepG2 cells and isolated
mouse hepatocytes indicate that the impaired insulin ac-
tion induced by the saturated fatty acid palmitate is asso-
ciated with a specific defect in Akt activation, which is
independent of tyrosine phosphorylation of IRS1. How-
ever, we do not rule out the possibility that alterations in
PI3K subunit contents and associations with IRS1, or
XBP1 (42, 43), may be involved in the palmitate-mediated
changes in Akt activation and insulin action. Interestingly,
a different pattern of response was observed among the
three ER stress inducers (see Supplemental Table 2 for
summary of results). In contrast to palmitate treatment,
high-dose Tg and tunicamycin treatments lead to reduced
tyrosine phosphorylation of IRS1. These divergent re-
sponses may reflect the differing nature or severity of UPR
activation among the three ER stress inducers. Tg and
tunicamycin treatments are linked to stronger increases in
IRE1 phosphorylation and CHOP levels. Perhaps the in-
tensity or pattern of UPR activation required for inhibition

of insulin-stimulated tyrosine phosphorylation was not
evoked in our palmitate-treated cells. Previous studies in
rat hepatoma cell lines (Fao and H4IIEC3) and HepG2
cells found that palmitate can inhibit tyrosine phosphor-
ylation of insulin receptor and IRS1/2 (17, 37, 44, 45).
However, in Fao cells, the palmitate-mediated reduction
of Akt phosphorylation preceded the defect in IRS1 phos-
phorylation, and the reduction of insulin receptor phos-
phorylation corresponded to depleted levels of total insu-
lin receptor protein, suggestive of it being a latter event
(37). Thus, the studies suggest a strong correlation of
palmitate-induced insulin resistance with an IRS-indepen-
dent defect in Akt phosphorylation. More prolonged ex-
posure to palmitate may result in defective signaling up-
stream of Akt.

The results of our studies establish the link between ER
stress and palmitate-induced insulin resistance in hepato-
cytes. That a similar mechanism may operate in vivo is
supported by studies in animal models of obesity. Atten-
uation of ER stress in rodents using transgenic approaches
or chemical interventions is associated with improved in-
sulin sensitivity (20, 21, 46). Moreover, interventions that
enhance insulin sensitivity and improve diabetes are as-
sociated with reduced ER stress (47, 48). In humans, obe-
sity is associated with increased ER stress in liver and ad-
ipose tissue (23, 49, 50), and the improved hepatic insulin
sensitivity observed after weight loss is correlated with
decreased expression of ER stress markers (23). Further-
more, ER stress has been implicated not only in the de-
velopment of insulin resistance but also in lipid-induced
apoptosis in liver cells (51, 52) and pancreatic �-cells (36,
53), highlighting the importance of ER stress in the pro-
gression of diseases, such as fatty liver disease and type 2
diabetes.

ER stress-induced hyperactivation of the JNK pathway
has been proposed to mediate serine phosphorylation of
IRS1, and thus its inactivation (19). JNK activation is
found in mouse models of obesity and is implicated in the
development of insulin resistance (54, 55). However,
whether phosphorylation of IRS1 on serine 307 negatively
regulates IRS1 activity (3, 19, 56, 57) has recently been
challenged (58). Interestingly, tunicamycin-mediated in-
hibition of IRS1 tyrosine phosphorylation (Supplemental
Fig. 3, A and 3C) occurred in the absence of JNK activa-
tion, as indicated by unchanged JNK phosphorylation in
tunicamycin-treated cells (Supplemental Fig. 3B). This
raises the possibility of a dissociation between JNK acti-
vation and defects in IRS1 phosphorylation in tunicamy-
cin-treated cells. The association between ER stress-in-
duced TRIB3 (tribbles homolog 3) expression (59) and
palmitate-mediated insulin resistance is of interest given
the potential role of TRB3 as a negative modulator of Akt
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(60). However, the role of TRB3 in the
regulation of Akt has recently been
questioned (61, 62). Alternatively,
palmitate may cause the reduction in
Akt phosphorylation levels by increas-
ing phosphatase expression and/or ac-
tivity. This is supported by findings in
myotubes in which palmitate disrupts
insulin signaling by promoting PP2A-
like activity and the dephosphorylation
of Akt (63). Our studies demonstrate a
partial requirement of ER stress in
palmitate-mediated inhibition of insu-
lin signaling and action, suggesting that
additional and/or interacting mecha-
nisms are likely to be involved. Interac-
tions between ER stress, mitochondrial
dysfunction, and reactive oxygen spe-
cies production (17, 37) would be fa-
cilitated by the close apposition of the
mitochondria and ER membranes;
stress in one of these organelles would
be expected to communicate with and
influence the function of the other. In-
deed, mitochondrial dysfunction in-
duced with oligomycin, an ATPase in-
hibitor, has been shown to induce an
ER stress response in hepatoma cells,
which results in potentiated up-regula-
tion of gluconeogenic enzyme expres-
sion (64).

Various mechanisms may be respon-
sible for the induction of ER stress by
saturated fatty acids. In CHO cells,
palmitate is rapidly incorporated into
saturated phospholipid and TAG spe-
cies in microsomal membranes, result-
ing in membrane remodeling, dilata-
tion of the ER, and redistribution of
chaperones to the cytosol (65). Other
mechanisms may include intracellular
accumulation of fatty acids or triglyc-
erides (or associated metabolites) (66),
a redistribution of calcium stores (67),
or the generation of a trafficking defect
between the ER and the Golgi (68).

The UPR is an important protective
signaling pathway required for cell dif-
ferentiation, function, and survival, as
observed in secretory cells, such as B
lymphocytes (33) and �-cells (32). Our
studies demonstrate the striking differ-
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ential effects of the adaptive and deleterious UPR on he-
patic insulin signaling. The findings suggest that the adap-
tive UPR may play an important role in promoting insulin
action in hepatocytes in addition to its potential involve-
ment in lipid metabolism (22, 69–71). That the UPR is
involved in the adaptation to low-level palmitate is sup-
ported by our findings of moderately increased XBP1
mRNA splicing and the subsequent protection against the
marked induction of XBP1 splicing and CHOP expres-
sion with acute high-level palmitate. Furthermore, similar
effects on insulin signaling were observed after the direct
activation of chronic mild ER stress. The mechanisms by
which the adaptive UPR leads to enhanced insulin-stim-
ulated Akt phosphorylation in liver cells remain to be de-
termined. XBP1 activity may play an important role in ER
capacity to cope with stress as suggested in previous stud-
ies performed in mouse embryonic fibroblasts (19). Recent
studies have also suggested that p38 MAPK (72) and the
regulatory subunits of PI3K, p85� and p85� (42, 43),
interact with, and increase the nuclear translocation of the
spliced form of XBP1. This leads to an increase in the
expression of chaperones and ER-associated degradation
proteins that suppress feeding-induced ER stress and sub-
sequently improve insulin sensitivity. It will be of interest
to test whether similar mechanisms play a role in the en-
hanced insulin signaling observed in our models of chronic
mild ER stress. Rutkowski et al. (24) suggested that the
adaptive response to ER stress is a consequence either of
selective activation of sensors or divergence in the activa-
tion of downstream effector molecules of the UPR.

In conclusion, the results of the present study demon-
strated a direct connection between ER stress and the reg-
ulation of hepatic insulin action. Depending on the con-
centration and duration of exposure, elevated palmitate
evokes either an adaptive UPR, which enhances insulin
signaling and protects against subsequent palmitate chal-
lenges, or a deleterious UPR that causes insulin resistance.
These findings raise the possibility that ER stress is a con-
tributing factor in the normal adaptations that are re-
quired to meet changing nutritional demands for energy
homeostasis, but also in the development of insulin resis-
tance that is associated with metabolic diseases such as
type 2 diabetes.
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