
IY29CH22-Schwartzberg ARI 7 February 2011 22:42

SLAM Family Receptors and
SAP Adaptors in Immunity
Jennifer L. Cannons,1 Stuart G. Tangye,2

and Pamela L. Schwartzberg1

1National Human Genome Research Institute, National Institutes of Health, Bethesda,
Maryland 20892; email: jcannons@mail.nih.gov, pams@nhgri.nih.gov
2Immunology Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010,
Australia; email: s.tangye@garvan.org.au

Annu. Rev. Immunol. 2011. 29:665–705

First published online as a Review in Advance on
January 3, 2011

The Annual Review of Immunology is online at
immunol.annualreviews.org

This article’s doi:
10.1146/annurev-immunol-030409-101302

Copyright c© 2011 by Annual Reviews.
All rights reserved

0732-0582/11/0423-0665$20.00

Keywords

XLP, cytotoxicity, germinal centers, autoimmunity, innate
lymphocytes

Abstract

The signaling lymphocyte activation molecule (SLAM)-associated pro-
tein, SAP, was first identified as the protein affected in most cases of
X-linked lymphoproliferative (XLP) syndrome, a rare genetic disorder
characterized by abnormal responses to Epstein-Barr virus infection,
lymphoproliferative syndromes, and dysgammaglobulinemia. SAP con-
sists almost entirely of a single SH2 protein domain that interacts with
the cytoplasmic tail of SLAM and related receptors, including 2B4,
Ly108, CD84, Ly9, and potentially CRACC. SLAM family members
are now recognized as important immunomodulatory receptors with
roles in cytotoxicity, humoral immunity, autoimmunity, cell survival,
lymphocyte development, and cell adhesion. In this review, we cover
recent findings on the roles of SLAM family receptors and the SAP
family of adaptors, with a focus on their regulation of the pathways
involved in the pathogenesis of XLP and other immune disorders.
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X-LINKED
LYMPHOPROLIFERATIVE
DISEASE

X-linked lymphoproliferative disease (XLP) is
a rare genetic disorder that is generally char-
acterized by a fatal response to infection with
the Epstein-Barr virus (EBV) (1–7). EBV in-
fects mature B lymphocytes, leading to a lym-
phocytosis characterized by a large expansion
of lymphocytes that are primarily reactive CD8
T cells. Patients with XLP fail to clear EBV-
infected B cells and have a massive lympho-
cytic expansion, which can lead to infiltration of
the liver, bone marrow, and other organs. XLP
patients also develop hemophagocytic lympho-
histiocytosis syndrome (HLH) in which innate
immune cells become hyperactivated and
phagocytic; these complications are often fatal
(8–11). Although EBV was initially identified as
the catalyst for the presentation of XLP (1, 3, 4),
it is now clear that several of the clinical features
of XLP are EBV independent (11). This con-
clusion has been strengthened by the discov-
ery of the gene responsible for most XLP cases,
SH2D1A, which encodes the adaptor molecule
SAP that binds to the SLAM family of cell sur-
face receptors (12–14). SAP-deficient patients
who survive EBV infection, or who have never
been infected by EBV, still develop lympho-
proliferative disorders, usually of B cell origin,
and dysgammaglobulinemias that can progress
to frank hypogammaglobulinemia with a sim-
ilar incidence (8, 10, 15, 16). More recently,
studies of gene-targeted mice and lymphocytes
from XLP patients have revealed that XLP is
associated with other immune abnormalities,
including impaired germinal center (GC) for-
mation and long-term humoral immunity (17–
21); defects in the development of innate-type
T lymphocyte subsets, including natural killer
T (NKT) cells (22–24); and impaired T cell
apoptosis (25–27). These findings underscore
the diverse nature of this disorder and highlight
its phenotypic overlap with other lymphoprolif-
erative and immunodeficiency states, including
common variable immunodeficiency (CVID),
autoimmune lymphoproliferative syndrome

(ALPS), and HLH (28–31). Indeed, several
male patients initially diagnosed with CVID,
primary HLH, or EBV− non-Hodgkin’s B
cell lymphoma were subsequently found to
have mutations in SH2D1A (28, 30–34). Thus,
XLP is increasingly recognized as part of the
differential diagnosis of a growing number
of primary immunodeficiencies and immune
disorders.

Despite the description of this disease over
35 years ago and the identification of the major
genetic cause over 10 years ago, much about
the broad nature of the pathogenesis of XLP
remained unknown, including the profoundly
abnormal responses to EBV, the predisposition
to lymphoproliferative disorders, and the na-
ture of the humoral defects. In this review, we
examine recent findings on SAP and the SLAM
family receptors that help provide insight
into disease pathogenesis. However, it should
be noted that SLAM family members have
diverse cell functions, including cells that do
not express SAP. Some of these are associated
with functions of the related adaptor molecules
EWS-Fli1-activated transcript-2 (EAT-2) and,
in mice, EAT-2-related transducer (ERT),
which are expressed in other hematopoietic
cells, while others may be related to functions
independent of these adaptors.

Although SAP has been implicated in
most XLP cases, patients with fatal infectious
mononucleosis and other XLP-like features
have been recently found to have mutations that
affect two additional proteins, XIAP (encoded
by BIRC4) (7, 35–37) and ITK (IL-2-inducible
T cell kinase) (38). XIAP deficiency is now des-
ignated XLP2 to distinguish it from SAP de-
ficiency (which is termed XLP1) and is associ-
ated with a high incidence of HLH and a lack of
lymphomas (36, 39). Mutations affecting ITK,
a tyrosine kinase involved in T cell receptor
(TCR) signaling, were reported in two sisters
with fatal infectious mononucleosis and im-
munodeficiency (38). How mutations affecting
XIAP and ITK lead to abnormal responses to
EBV remains unclear, as does whether these
mutations affect signaling from SLAM family
receptors.
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THE SAP FAMILY OF SH2
DOMAIN–CONTAINING
PROTEINS

In 1998, two groups used positional cloning to
identify a gene, SH2D1A (also called DSHP),
which was mutated in most XLP1 cases (12,
13). At the same time, a third group identified
SAP as a binding partner for the cytoplasmic
domain of the costimulatory receptor SLAM
and demonstrated that the gene encoding SAP
was deleted or otherwise mutated in patients
with XLP1 (14). Surprisingly, this gene en-
coded only a 128 amino acid protein (14 kDa),
consisting almost entirely of a single Src homol-
ogy 2 (SH2) interaction domain, which binds
phosphorylated tyrosine residues. SAP is ex-
pressed primarily in lymphocytes, specifically
T, NK, and NKT cells, as well as in eosinophils
and platelets (12–14, 23, 40–47). Expression in
transformed B cells and B cell lines has also
been reported; however, expression in normal B
cells has not been consistently observed (13, 20,
48–50).

The SAP SH2 domain has the great-
est homology to the SH2 domains of
EAT-2, SH2 domain–containing inositol-5-
phosphatase (SHIP), and Abl (13, 14). Like
SAP, EAT-2 (Sh2d1b) and ERT (Sh2d1c) are
composed of a single SH2 domain and a short
C terminus (51–53). EAT-2 has been detected
in NK cells, dendritic cells (DCs), human CD8
T cells, macrophages, and platelets (44, 52, 54).
Transcripts have also been detected in B cells
and activated T cells (51, 56, 57). In humans,
SH2D1C (ERT ) is a pseudogene and not ex-
pressed (51), whereas murine ERT is exclu-
sively found in NK cells (52).

SLAM FAMILY MEMBERS

Overview

It is now recognized that SLAM, the receptor
to which SAP binds, is a member of a family
of related proteins that broadly consists of
SLAM (CD150, Slamf1), CD48 (Slamf2),
2B4 (CD244, Slamf4), Ly9 (CD229, Slamf3),
CD84 (Slamf5), NK-T-B-antigen (NTB-A;

also known as SF2000 in human or Ly108 in
mouse, CD352, Slamf6), CD2-like receptor ac-
tivating cytotoxic cells (CRACC; also known as
CS1, CD319, Slamf7), B lymphocyte activator
macrophage expressed (BLAME, Slamf8), and
SF2001 (CD84H, Slamf9). These receptors are
considered to be a subset of the greater CD2
superfamily of immunoglobulin (Ig) domain–
containing molecules and are expressed on the
surface of a wide variety of hematopoietic cells
(Table 1). Cellular, biochemical, and genetic
data suggest that these immunomodulatory
receptors display diverse functions, including
roles in regulating costimulation (SLAM) (18,
58, 59); T cell cytokine production (SLAM,
Ly9, 2B4, CD84, Ly108) (58–68); NK cell–
and CD8 T cell–mediated cytotoxicity (2B4,
NTB-A/Ly108, and CRACC) (62, 69–81);
adhesion between hematopoietic cells (CD84,
Ly108, 2B4, and SLAM) (44, 82–85); T cell
reactivation-induced cell death, RICD (NTB-
A) (27); the development of innate T lympho-
cytes (SLAM and Ly108) (22–24, 86–91); as
well as functions of neutrophils (Ly108) (64)
and macrophages (SLAM) (67, 92) (Table 2).

The SLAM Receptor Gene Family

Most members of the SLAM family are en-
coded in a gene cluster on synteneic regions of
mouse and human chromosome 1: The human
and mouse genes encoding BLAME (93) and
SF2001 (94) as well as human SH2D1B (EAT-
2) (53) and mouse Sh2d1b (Eat-2) and Sh2d1c
(Ert) (52) are located close to the main SLAM
locus (Figure 1). The genomic organization,
location, and sequence suggest that the genes
encoding the SLAM family arose from duplica-
tions of a common ancestral precursor (95–97).
Multiple splice forms and polymorphisms have
been identified for many of the genes encod-
ing SLAM family members and in some cases
are associated with altered biology, particularly
predispositions to autoimmunity (see below).

The SLAM family members are type I gly-
coproteins characterized by an amino-terminal
Ig variable (V)–like domain lacking canonical
disulfide bonds and a membrane-proximal C2
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Table 1 Expression pattern of SLAM receptor family membersa

Receptor Ligand Expression pattern References
SLAMF1
SLAM
CD150

SLAM (CD150)
Measles virus (H)
Gram-negative OmpC and OmpF

HSCs, thymocytes (highest DP), B
cells, DCs, activated T,
macrophages, platelets, GC TFH

14, 40, 41, 44, 58, 68, 83,
87, 92, 96, 114, 120, 183,
238, 284, 286

SLAMF2 CD2 Widely expressed hematopoietic cells 105, 238, 288, 289
CD48 CD244 (2B4)

FimH
SLAMF3
Ly9
CD229

Ly9 (CD229) Thymocytes, T, TFH, NKT, B, NK
(low), macrophages, DC

99, 100, 125, 140, 184, 234

SLAMF4
2B4
CD244

CD48 MPP, NK, γδ, activated CD8 T,
CD8 iELs, monocytes, basophils,
eosinophils

41, 74, 80, 81, 191, 201,
238, 290–294

SLAMF5
CD84

CD84 NK, NKT, B, T, monocytes, platelets,
DC, eosinophils, neutrophils, TFH

41, 44, 65, 83, 125, 182,
183, 234, 235, 295, 296

SLAMF6 (CD352)
Human: NTB-A
Mouse: Ly108

Human: NTB-A
Mouse: Ly108

Thymocytes (highest DP), NK, T, B,
DC (low), eosinophils, neutrophils,
TFH

41, 73, 83, 87, 94, 112, 297

SLAMF7
CRACC, CS1, CD319

CRACC (CD319) NK, B, DC, plasma cells, activated
CD4 and CD8 T

70, 71, 113, 125, 136, 298

SLAMF8 No data 93
BLAME
SLAMF9 No data 94, 108, 109
SF2001
CD84-H1

aAbbreviations: DC: dendritic cell; FimH: lectin expressed by (type 1 fimbriated) Escherichia coli; GC: germinal center; H: hemagglutinin;
HSCs: hematopoietic stem cells; iELs, intraepithelial lymphocytes; MPP: multipotent hematopoietic progenitors; Omp: outer membrane protein;
SLAM: signaling lymphocyte activation molecule; TFH: T follicular helper cell.

domain containing two conserved disulfide
bonds (98). Ly9 is the exception, in which the
V-C2-like sequences are duplicated, resulting
in an extracellular domain containing four
Ig-like domains (99, 100). SLAM family mem-
bers contain one or more immunoreceptor
tyrosine-based switch motifs (ITSMs)—
TxYxxI/V (“x” denotes any amino acid)—in
their cytoplasmic domains (Figure 2) (14,
101), which have high affinity for SAP and/or
EAT-2 (14, 56, 102, 103) (Figure 2). Although
CD48 is encoded within the SLAM cluster
and has homology in its extracellular domain,
it is a glycosyl-phosphatidylinositol-anchored
protein (104, 105); we refer readers to other
reviews of its function (106). However, it is
important to note that CD48 is the ligand for

2B4 and, although it is expressed on nearly all
hematopoietic cells, it is highly upregulated
on B cells following EBV infection (107).
BLAME and SF2001 have short intracellular
tails that lack any tyrosine motifs and may
represent orphan ligands (93, 94, 108, 109).
In this review, we focus on the six core SLAM
family members that contain ITSMs: SLAM
(SLAMF1), Ly108/NTB-A (SLAMF6), CD84
(SLAMF5), Ly9 (SLAMF3), 2B4 (SLAMF4),
and CRACC (SLAMF7) (Figure 2).

Although SLAM family members share
characteristics with CD2 and CD58 (human),
the nucleotide and amino acid sequence
identity between these receptor subgroups
is low (<15%) (110). With the exception of
2B4, SLAM family members are homophilic
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Figure 1
Genomic organization of the mouse and human Slam locus. The genes encoding members of the SLAM receptor family (SLAM locus)
are located on human chromosome 1q23 and mouse chromosome 1H2. The genes encoding the SLAM family members are clustered
in a genomic segment of 359 kb in humans and 392 kb in mice. Two genes (SLAMF8 and SLAMF9) that belong to the SLAM family,
which do not bind to SAP and/or EAT-2, are located in the same chromosome region, but outside of the SLAM locus. Human
SH2D1B (EAT2) as well as mouse Sh2d1b (Eat2a) and Sh2d1c (Eat2b) are also located close to the Slam locus. The arrangement of the
SLAM gene family is identical in mouse and human genomes with the exception of the gene orientation relative to the centromere.
Black arrows signify the transcriptional direction of these genes.

receptors and thus are self-ligands (65, 73,
111–117). Data obtained from structural
analysis have indicated that, except for Ly9,
the homophilic and heterophilic interactions
of these receptors span a distance consistent
with localization within the T cell–antigen-
presenting cell (APC) or NK cell–target cell
interface (approximately 105 Å) (111, 114,
117–119). Despite the large binding interface
of these receptors, changes in a single residue
can significantly alter association (111, 116,
117, 119). Within the SLAM family, ligand
affinities span three orders of magnitude
(SLAM ∼200 μM, 2B4-CD48 ∼4 μM, NTB-
A ∼2 μM, CD84 sub-μM) (111, 114, 117,
119), which could contribute to functional
differences between the various receptors.

Differential Isoform Usage of SLAM
Family Members

Several different alternatively spliced isoforms
of SLAM (58, 120), CD84 (121), CRACC

(122), Ly108 (123, 124), Ly9 (125), and 2B4
(126) have been identified that differ in the
length of the cytoplasmic domain. Notably, al-
though Ly108 contains two ITSMs in its cy-
toplasmic domain, the Ly108.1 isoform has
one additional unique tyrosine motif, whereas
the Ly108.2 isoform contains two additional
unique tyrosines (123, 127). Additional iso-
forms have also been reported (124). These
isoforms are differentially expressed in mouse
strains that have high antinuclear antibod-
ies (ANAs) and can potentially elicit different
downstream signaling pathways (see the sec-
tions below on Signal Transduction and on Au-
toimmunity) (123, 127). Furthermore, murine
2B4 has two isoforms: a short activating form
(2B4-S) and a long inhibitory variant (2B4-L)
differing in the number of ITSMs (126, 128).
Because only 2B4-L is found in humans and is
activating, the relevance of these features is not
clear. Nonetheless, alterations in the number of
ITSMs influence SAP and EAT-2 recruitment
and thus affect signal transduction events. Two
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splice variants of human 2B4 have been iden-
tified: 2B4-B has five additional amino acids
between the V and C2 regions compared with
2B4-A (129, 130). However, whether this influ-
ences 2B4/CD48 receptor/ligand interactions
remains to be determined.

In addition to splicing variants, multiple
polymorphisms have been identified in the
SLAM locus that segregate into two major
haplotypes in inbred mouse strains. Murine
Ly9 was initially identified as an alloantigen
marker: The Ly9.1 allele is expressed in most in-
bred mouse strains, whereas Ly9.2 is expressed
in C57Bl/6 and related strains (99). Sequence
analysis of Balb/c and C57Bl/6 identified nine
differences, four of which are located in the
ligand-binding surface (131–133). 2B4 is also
polymorphic: The 2B4 monoclonal antibody
(mAb) recognizes 2B4 in C57Bl/6 and C58/J
mice, whereas the C9.1 mAb recognizes 2B4
in most other strains including NZB, SJL,
C3H, CBA, BALBc, DBA, A/J, and 129, which
possess four copies of the gene (134). More-
over, Wakeland and colleagues (135) found
that the ligand-binding domains of Ly9, CD48,
and CD84 were highly polymorphic in natu-
ral mouse populations, suggesting that selection
favored variability.

SIGNAL TRANSDUCTION BY
SLAM FAMILY MEMBERS

SAP Recruitment to SLAM
Family Members

A key feature of the SLAM family of surface
receptors is the presence of one or more SAP-
binding ITSMs in their cytoplasmic domains
(14, 101). The exception is CRACC: Although
one study showed binding of SAP to human
CRACC with low affinity (136), most studies
indicate that human and murine CRACC only
associate with EAT-2 (54, 70, 71) (see Table 2
and Figures 2 and 3).

Although most SH2 domains require
phosphorylated tyrosines for binding, SAP is
unusual in that it can bind to the membrane
proximal ITSM in the cytoplasmic tail of

SLAM via a three-pronged binding mecha-
nism. This structure stabilizes binding to the
nonphosphorylated tyrosine, although binding
is improved following phosphorylation (102,
103, 137, 138). In contrast, tyrosine phospho-
rylation of ITSMs is required for SAP binding
to other SLAM family members, including
2B4 (69, 78, 139), NTB-A (69), Ly108 (124),
Ly9 (140), and CD84 (57, 140).

When SAP was first identified, it was
unclear how a single SH2 domain could par-
ticipate in signal transduction and contribute
to the diverse range of XLP1 phenotypes.
SH2 protein interaction domains are usually
part of larger proteins—which contain other
interaction domains (adaptor proteins) or con-
tain enzymatic activity—that are regulated by
intra- or intermolecular interactions involving
the SH2 domain. Initial studies, including the
seminal cloning paper from the Terhorst group
(14), suggested that SAP functioned to compete
with binding of other SH2 domain–containing
proteins to SLAM, hence the naming of the
SAP-binding motif as a switch motif (ITSM) to
distinguish it from immunoreceptor tyrosine
activation motifs (ITAMs), which recruit
Syk kinases, and immunoreceptor tyrosine
inhibitory motifs (ITIMs), which recruit phos-
phatases (141). Consistent with this idea, SAP
expression blocked the recruitment of the SH2
domain–containing protein tyrosine phos-
phatase (SHP)-2 to tyrosine phosphorylated
SLAM residues (14), suggesting that SAP steri-
cally hindered recruitment. Analyses of primary
NK and CD8 cells, cell lines, and overexpres-
sion studies indicate that SAP also competes
with SHP-1 and/or SHP-2 for recruitment to
SLAM, CD84, 2B4, NTB-A, and Ly9 (14, 27,
69, 78, 101, 120, 139, 140, 142, 143).

Interestingly, both SAP and SLAM are re-
cruited to the immunological synapse (the site
of T cell–APC contact) (61, 144), and anti-CD3
stimulation was shown to increase SLAM phos-
phorylation (144). Similarly, 2B4 and NTB-A
are recruited to the cytolytic synapse in NK
and CD8 T cells (62, 145, 146). Moreover,
TCR engagement on CD8 T cell blasts induces
NTB-A recruitment to TCR/CD3 clusters
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and increases NTB-A/SAP association while
decreasing NTB-A/SHP-1 association (27).
It is notable that a negative feedback pathway
involving SHP-1 has been implicated in the
discrimination between weak and strong
ligands during TCR signaling and in activating
and inhibitory signaling of NK cell receptors
(147). Thus, SLAM/SAP signaling may pre-
vent inhibitory signals by altering phosphatase
recruitment, thereby enhancing TCR/NK
cell–mediated signal transduction at the site
of APC-target interaction and promoting cell
activation.

However, an alternative view of SAP-
mediated transduction arose from elegant
studies from the groups of Veillette, Terhorst,
and Eck, who demonstrated that SAP recruited
the Src family tyrosine kinase Fyn to SLAM.
Following ligation of SLAM, 2B4, or Ly108,
SAP interacts with and recruits Fyn, leading to
subsequent receptor tyrosine phosphorylation
and the recruitment of downstream signaling
intermediates (124, 148–150). Data suggest that
an inducible SAP-Fyn interaction is initiated
by a conformational change of SAP bound to
SLAM (151). This interaction occurs between
the SH3 domain of Fyn and an arginine-based
motif in SAP that lies outside of the phospho-
tyrosine binding pocket, thus allowing SAP to
simultaneously interact with a SLAM family
member and Fyn (143, 148, 152). Mutation of
a critical arginine (R78) of SAP dramatically
reduces the ability of SAP to recruit Fyn and
induce SLAM phosphorylation (143, 148, 152).
This interaction appears specific for Fyn: Ty-
rosine phosphorylation of SLAM, Ly108, and

2B4 is markedly impaired in thymocytes and
NK cells from either Sh2d1a−/− or Fyn−/− mice
(124, 148–150, 152). However, data from a two-
hybrid screen and glutathione S-transferase-
pulldowns demonstrated a potential interaction
of SAP with the kinase domain of Lck (153).
In some of the original work implicating Src
kinases in SLAM signal transduction, Fgr and
Lyn were also associated with SLAM in B cell
lines (154, 155). Interestingly, CD84 can be
tyrosine phosphorylated in T cells from XLP1
patients (57), indicating that CD84 does not
require SAP-mediated Fyn recruitment for
receptor tyrosine phosphorylation, while still
requiring SAP for downstream signal transduc-
tion. Thus, depending on the cell type, state of
activation, and specific SLAM family member
engaged, multiple mechanisms may exist for
recruitment of Src family kinases. Notably,
these two views of SAP-mediated signaling, in
which SAP either acts as a competitor or acts
as an adaptor to recruit Src kinases, may not
be mutually exclusive and thus may contribute
to varying effects of SLAM family signaling in
the presence or absence of SAP (143).

EAT-2-Mediated Signal Transduction

EAT-2 shares ∼50% amino acid identity with
SAP. Biochemical analysis of transfected cell
lines demonstrated that EAT-2 is recruited to
ITSMs of SLAM, Ly9 (56), CD84 (56, 57),
2B4 (54, 56), and CRACC (54). Despite their
sequence homology, SAP and EAT-2 exhibit
distinct features. Notably, the predominant
ITSMs in the cytoplasmic domains of NTB-A,

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
SLAM receptor family members. SLAM family members are type I glycoproteins characterized by an N-terminal Ig V-like domain
lacking canonical disulfide bonds and a membrane-proximal C2 domain containing two conserved disulfide bonds. The cytoplasmic
tails of (a) mouse and (b) human SLAM, 2B4, CD84, Ly108/NTB-A, Ly9, and CRACC contain at least one ITSM, the binding site for
SAP and EAT-2, as well as additional tyrosine residues. Only the mouse long 2B4 isoform is shown: The shorter variant contains only
the membrane-proximal ITSM (128). Multiple isoforms of CD84, SLAM, CRACC, and Ly108/NTB-A have also been found. The
numbers indicate the tyrosine position relative to the protein’s N-terminal amino acid. Accession numbers are indicated below the
protein name and correspond to Ensembl ID. Readers should note the difference between the NCBI and published sequence (71).
(Abbreviations: CRACC, CD2-like receptor activating cytotoxic cells; EAT-2, EWS-Fli1-activated transcript-2; ITSM,
immunoreceptor tyrosine-based switch motif; NTB-A, NK-T-B-antigen; SAP, SLAM-associated protein; SLAM, signaling
lymphocyte activation molecule.)
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2B4, and CD84 that bind SAP and EAT-2 are
different (56, 57, 62). This likely explains the
ability of NTB-A to associate simultaneously
with SAP and EAT-2 (72). Moreover, although
SAP can bind nonphosphorylated SLAM, asso-
ciation with EAT-2 is strictly phosphotyrosine
dependent (56). Lastly, although recruitment
of EAT-2 to CRACC increases upon receptor
tyrosine phosphorylation, data suggest that its
binding to 2B4 decreases (54). Thus, SLAM
receptors interact with adaptor proteins with
different affinities, and the quality of the
interaction can be modified by changes in the
phosphorylation state of SLAM receptors.

EAT-2 and ERT do not contain the arginine
motif found in SAP(R78) that is responsible
for Fyn binding. Rather, these molecules have
tyrosine residues (two in murine EAT-2 and
ERT, one in human EAT-2) in the C-terminal
domain that are phosphorylated and required
for mediating signaling (52). Overexpression
studies and Biacore binding analyses provided
evidence that Fyn can associate with the
phosphorylated tyrosine residues in EAT-2
(51, 156), while yeast two-hybrid analysis
indicated that EAT-2 directly binds to the
catalytic domain of Src family kinases (51).
These data suggest that EAT-2 and ERT
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couple Src family kinases to SLAM family
members via mechanisms distinct from SAP.

Signal Transduction Independent
of SLAM Family Members

Although SAP was initially identified as a
SLAM binding partner, evidence indicates that
SAP-related adaptors influence signaling from
other receptor families. SAP was shown to bind
the neurotrophic receptor TrkB and to medi-
ate signal transduction in the rat pheochromo-
cytoma cell line PC12 (157). More recently, as-
sociations between SAP and CD22 as well as
FcγRIIB were identified (158, 159). The physi-
ological relevance of these interactions remains
to be determined, as CD22 and FcγRIIB are
predominantly expressed by B cells, which may
not express SAP.

Interestingly, NK cells lacking EAT-2,
ERT, or all three SAP-related proteins
demonstrated enhanced activation in response
to nonhematopoietic target cells that do not
express SLAM family ligands (53, 160). Thus,
EAT-2 and ERT may provide inhibitory
signals downstream of other receptors. Alter-
natively, EAT-2 and ERT could signal via NK
cell–NK cell interactions, endowing the cells
with specific functions that influence other
receptor pathways.

Signal Transduction Downstream
of SLAM

SLAM family receptors have been shown to
associate with distinct downstream signaling
intermediates. SLAM ligation on thymocytes,
or a T cell line, enhances SAP recruitment,
SLAM tyrosine phosphorylation, and the re-
cruitment and phosphorylation of SHIP, dock-
ing protein 1 (Dok1), Dok2, and Ras-GTPase-
activating protein (Ras-GAP) (150) (Figure 3).
This signaling cascade is dependent on the gen-
eration of a ternary SLAM-SAP-Fyn complex
for SLAM phosphorylation and is defective
in SAP-deficient, SAP(R78A)-expressing, and
Fyn−/− thymocytes (148, 150, 152, 161).

However, SLAM-SAP interactions are
likely to mediate other signal transduction
pathways. SLAM cross-linking on B and T cells
results in AKT activation (59, 155), which is
activated downstream of phosphatidylinositol
3-kinase (PI3K). In CD4 T cells, SLAM en-
gagement also potentiates and prolongs PKCθ

recruitment to the site of APC contact in a SAP-
dependent manner, as well as influences Bcl-10
phosphorylation and patterns of NF-κB acti-
vation (61). Although this interaction requires
the R78 motif of SAP, SAP and PKCθ coim-
munoprecipitate in both wild-type and Fyn−/−

T cells (162). In overexpression studies, SAP

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3
Signal transduction by SLAM family members. (a) SAP(R78)-dependent activation: SAP associates with the ITSM in the cytoplasmic
domain of SLAM. The arginine 78 (R78) of SAP binds the SH3 domain of Fyn and recruits Fyn to the SLAM/SAP complex; Fyn
subsequently phosphorylates tyrosine residues in the cytoplasmic domain of SLAM. These tyrosine-phosphorylated residues act as
docking sites for SHIP, leading to tyrosine phosphorylation of the adaptor proteins Dok1 and Dok2 and Ras-GAP. SAP also
contributes to signaling through the TCR by interacting with PKCθ and influencing Bcl-10 and patterns of NF-κB activation.
SLAM-mediated pathways dependent on SAP(R78) influence CD4 T cell cytokine production. In addition, SAP is recruited to 2B4 and
Ly108, leading to Vav1 and CBL phosphorylation, and is thought to affect NK cell– and CD8 T cell–mediated cytotoxicity.
(b) SAP(R78)-independent activation: GC formation is rescued in Sh2d1a−/− mice by the transfer of retrovirally reconstituted
SAP-deficient CD4 T cells expressing SAP or SAP(R78A). CD84 is tyrosine phosphorylated in the absence of SAP, and both CD84
and Ly108 participate in stable T-B cell conjugate pairing in vitro. (c–e) Inhibitory signaling in the absence of SAP. (c) SAP can block or
sterically hinder the recruitment of phosphatases (SHP-1 and SHP-2) to SLAM family members including SLAM, CD84, 2B4, Ly9,
and NTB-A. (d ) 2B4 and NTB-A can recruit CSK, leading to receptor phosphorylation and the subsequent recruitment of SHIP,
SHP-1, and SHP-2 phosphatases. (e) Sh2d1b−/− and/or Sh2d1c−/− mice revealed that EAT-2 and ERT can play either negative or
positive roles in 2B4-mediated NK cell cytotoxicity. In addition, in the absence of SAP, EAT-2, and ERT, 2B4 engagement results in
elevated SHIP phosphorylation. (Abbreviations: CSK, C-terminal Src kinase; Dok1/2, docking protein 1/2; EAT-2, EWS-Fli1-
activated transcript-2; ERT, EAT-2-related transducer; ITSM, immunoreceptor tyrosine-based switch motif; NK cell, natural killer
cell; NTB-A, NK-T-B-antigen; PKCθ, protein kinase Cθ; Ras-GAP, Ras-GTPase-activating protein; SAP, SLAM-associated protein;
SHIP, SH2 domain–containing inositol-5-phosphatase; SHP-1/2, SH2 domain–containing protein tyrosine phosphatase 1/2; SLAM,
signaling lymphocyte activation molecule; TCR, T cell receptor.)
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also bound to PAK-interacting exchange fac-
tor (PIX), leading to synergistic NFAT (nu-
clear factor of activated T cells) activation in
conjunction with ionomycin in Jurkat T cells
(163) and to NCK1 (noncatalytic region of ty-
rosine kinase 1) (158) via the R78 motif. Thus,
the R78 motif of SAP mediates several protein
interactions, which may not all require SAP’s
recruitment of Fyn.

In B cells lines, SLAM associates with Fgr
and/or Lyn (154, 155). B cell receptor (BCR)
ligation induced tyrosine phosphorylation
of SLAM, whereas anti-SLAM treatment
resulted in reduced SLAM phosphorylation
(154). SLAM ligation induced SHIP binding,
but unlike T cells, this was not SAP dependent
and resulted in reduced SHIP phosphorylation
(101, 154). In light of more recent data on
SLAM signal transduction, the antibody used
may have been inhibitory. SLAM phospho-
rylation has also been observed in Sh2d1a−/−

platelets (44). These data suggest that SLAM-
mediated signal transduction pathways differ
depending on the cell type examined.

Complexities of Signal Transduction
Events in NK Cells: 2B4,
Ly108/NTB-A, and CRACC

Engagement of 2B4 on murine NK cells
results in phosphorylation of all ITSMs (149,
164) and induces a distinct SAP-dependent
pathway. SAP can recruit Fyn to 2B4, leading
to increased 2B4 phosphorylation and down-
stream phosphorylation of Vav1 and c-Casitas
B-lineage lymphoma (c-CBL) (85, 149, 165).
Synergy between NKG2D and 2B4 engage-
ment on primary resting NK cells was required
for a strong Vav1 signal that could overcome
inhibition by c-CBL, resulting in Ca2+ flux,
Erk activation, and NK cell cytotoxicity (82,
118, 165–167). 2B4-mediated activation is de-
pendent on SAP-mediated recruitment of Fyn,
as receptor phosphorylation in SAP-deficient
and Fyn−/− murine NK cells and NK cells
from XLP1 patients is impaired (149, 168).
Interestingly, 2B4 associates with the adaptor
protein LAT (linker for activated T cells) in

membrane glycolipid–enriched microdomains
(167, 169, 170). In addition, following 2B4
ligation on human NK cells, the adaptor 3BP2
can associate with the fourth phosphorylated
ITSM (171). Phosphorylated 3BP2 can inter-
act with Vav1, LAT, and phospholipase Cγ

(PLCγ) (171–173) and potentially link 2B4 to
downstream events regulating cytotoxicity.

In addition to SAP, 2B4 and NTB-A can
recruit the inhibitory C-terminal Src kinase
(CSK) and the phosphatases SHP-1, SHP-2,
and SHIP-1; SAP prevents these interactions
(69, 78, 139, 174). It is possible that, in the
absence of SAP, phosphorylation of ITSMs by
CSK results in the recruitment of these phos-
phatases (174). Interestingly, Vav1 is a primary
substrate for dephosphorylation by SHP-1 dur-
ing inhibitory receptor engagement on NK
cells (175, 176). In addition, studies of SHIP-
deficient mice suggest that alterations in the
balance of phosphatases expressed in NK cells
influence 2B4 isoform expression and signal
transduction (177). The consequences of SAP,
EAT-2, and phosphatase recruitment to 2B4
are discussed below, in the Cytotoxicity section.

Analysis of primary human NK cells estab-
lished that NTB-A, 2B4, and CRACC asso-
ciate with both endogenous SAP and/or EAT-
2 (54, 72). Coexpression of EAT-2 increased
the Src kinase–induced phosphorylation of 2B4
and CRACC, suggesting that EAT-2 is re-
quired for the generation of activation signals
elicited by these receptors; recent data sup-
port a positive role for EAT-2 in both 2B4-
and CD84-mediated cytolysis and phosphory-
lation of Vav1 (54, 55). Recently, the tyrosines
in the C terminus of EAT-2 were also shown
to bind PLCγ (178), which is activated follow-
ing CRACC cross-linking (54). Thus, EAT-2
may mediate CRACC signaling in NK cells
both through recruitment of Src kinases and
through PLCγ-mediated pathways. Mutations
that abolish the ability of EAT-2 to associate
with NTB-A abrogated NK cell cytotoxicity
(72). In contrast, siRNA-mediated downregu-
lation of SAP or mutation of the SAP-binding
ITSM in NTB-A had minimal effect on NTB-
A-induced killing of target cells by transformed

676 Cannons · Tangye · Schwartzberg

A
nn

u.
 R

ev
. I

m
m

un
ol

. 2
01

1.
29

:6
65

-7
05

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
N

ew
 S

ou
th

 W
al

es
 o

n 
05

/0
4/

11
. F

or
 p

er
so

na
l u

se
 o

nl
y.



IY29CH22-Schwartzberg ARI 7 February 2011 22:42

human NK cell lines in vitro (72). However,
this finding contradicts other studies using cells
from XLP1 patients, which revealed a depen-
dency on SAP for NTB-A-mediated NK cell
cytotoxicity (69) (see the section below on Ex-
pression and Function of SLAM Family Recep-
tors on Human and Murine NK Cells).

Ly108-Mediated Signal Transduction
in Lymphocytes

Ligation of Ly108 on thymocytes requires SAP
and Fyn for tyrosine phosphorylation and re-
sults in phosphorylation of Vav1 and CBL, sim-
ilar to 2B4 (124). However, in human CD8 T
cell blasts, NTB-A still associated with SAP
when Fyn expression was markedly reduced by
siRNA (27). Ly108 has multiple isoforms vary-
ing in the length of the cytoplasmic domain (see
Figure 2): Engagement of Ly108.1 resulted in
increased tyrosine phosphorylation of down-
stream proteins compared with Ly108.2. Al-
tered expression of Ly108 isoforms including
increased expression of Ly108.1 is associated
with the lupus-prone Sle.1b haplotype (see the
Autoimmunity section) (124). Anti-CD3 stimu-
lation of peripheral Sle.1b T cells that predom-
inantly express the Ly108.1 isoform revealed
mildly elevated Ca2+ flux compared with cells
expressing higher amounts of Ly108.2 (123). In
contrast, immature B cells expressing Ly108.1
stimulated with α-IgM demonstrated reduced
Ca2+ flux (127). This apparent discrepancy may
reflect the developmental profile of the cells,
the cell type examined, and the relative levels of
SAP. Although it is not understood how Ly108
isoforms influence TCR-induced Ca2+ flux,
Vav1 phosphorylation is induced by Ly108 en-
gagement (124), and Vav1 affects TCR-induced
Ca2+ mobilization (179).

Consequences of Ly9 Engagement

Similar to SLAM, Ly9 phosphorylation is re-
duced in SAP-deficient thymocytes (153). Ly9
ligation resulted in receptor phosphorylation
and Grb2 recruitment to a tyrosine motif
(YENF) distinct from the SAP-binding site (66,

140). Following TCR and Ly9 engagement,
the μ2 chain of the clathrin-associated adap-
tor complex (AP-2) associates with Ly9, and
the receptor is internalized (180). The conse-
quences of Grb2 association or Ly9 internal-
ization are not known. Ly9 ligation on human
T cells reduces CD3-mediated ERK activation
(66), suggesting that Ly9 could serve a negative
regulatory function in T cell activation. How-
ever, to date, phenotypes of Ly9−/− mice have
not revealed negative roles in T cell activation
(63).

Summary

The SLAM receptor family has emerged as a
complex series of immunomodulatory proteins
that activate multiple downstream signaling
molecules. The signals transduced down-
stream of this receptor family may depend
on the mode of stimulation (antibody versus
ligand), the receptor isoform expressed, and
the activation status and cell type examined.
Moreover, as discussed below, the relative
expression of adaptor proteins SAP and EAT-2
and phosphatases SHP-1/2 and SHIP can
influence the signals that are transduced and
can profoundly affect cell function (Figure 3).

PHENOTYPES ASSOCIATED
WITH DEFICIENCIES IN
SAP-RELATED ADAPTORS AND
SLAM FAMILY RECEPTORS

The cloning of SH2D1A and the recognition
that its product associated with SLAM family
receptors opened a new era in the understand-
ing of XLP1 and the roles of SLAM and SAP
in normal immune function. In particular, the
generation of Sh2d1a−/− mice by several inde-
pendent groups (18, 49, 50, 181) has provided
critical insight into the immunological defects
associated with XLP1 and revealed previously
unappreciated phenotypes, including defects
in the development of NKT and other cells
with innate-like characteristics (22–24, 88,
90) as well as impaired T-B cell interactions
and defective GC formation (83, 84). In the
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next section, we review the roles of SAP and
the SLAM family receptors in immune cell
function and development in the context of
these phenotypes.

CYTOTOXICITY

One of the salient features of XLP1 is the pro-
foundly impaired response to EBV: NK and
CD8 T cells from XLP1 patients exhibit defec-
tive cytolytic responses to EBV-infected B cell
lines, whereas cytotoxicity against non-EBV-
infected cells appears normal, highlighting the
specificity of this phenotype (62, 69, 75, 78, 79).
Impairment in cytolytic function is likely to lead
to the accumulation of virus-infected B cells as
well as the persistence of reactive inflammatory
cells, both of which lead to the exaggerated re-
sponses seen in XLP1.

Expression and Function of SLAM
Family Receptors on Human and
Murine NK Cells

All human NK cells express 2B4, NTB-A, and
CRACC (58, 69, 70, 182), and a subset ex-
presses Ly9 (183). Murine NK cells express
2B4, CRACC, and Ly9 (52, 71, 74, 184). In
contrast to human NK cells, murine NK cells
constitutively express CD84 but not Ly108
(52, 124).

The effects of engaging 2B4 with anti-
2B4 mAb or CD48-expressing targets on hu-
man NK cell effector function differ depending
on the activation state of the responding cell
(76–78, 80–82, 185). Although ligating 2B4
alone on activated NK cells or clones strongly
induces granule exocytosis, cytotoxicity, and
cytokine secretion (76–78, 80, 81, 185), resting
NK cells are largely unresponsive to the
stimulatory effects of anti-2B4 mAb or CD48
expressed on transfected target cells (82). It has
since been established that 2B4 acts largely as
a coreceptor on resting NK cells, such that its
function depends on concomitant engagement
of other activating receptors such as NKG2D,
NKp44, NKp46, DNAM-1, and/or CD16 (82,
186). Thus, integration of diverse signaling

pathways downstream of multiple stimulatory
receptors is required for the induction of the
stimulatory function of 2B4 on resting NK
cells, a requirement that may safeguard against
inappropriate activation of such cells. The
mechanism underlying the switch in the ability
of 2B4 to behave as a coreceptor in resting
cells versus an activating receptor in stimulated
cells remains incompletely understood but may
reflect induced changes in expression levels of
components of the 2B4 signaling pathways.
Indeed, human resting NK cells express little
SAP but abundant levels of EAT-2 (187).
Furthermore, expression of SAP, but not
EAT-2, markedly increases in human NK cells
stimulated in vitro with IL-2, IL-12, IFN-α,
or poly(I:C), and this correlates with the ability
of such NK cells to be activated following 2B4
engagement in the absence of coengagement
of additional stimulatory receptors (187).
Thus, SAP levels in resting NK cells may be
insufficient to endow 2B4 with an activating
function, and increased expression of SAP
following in vitro stimulation may convert 2B4
from a coreceptor to an activating receptor.

NTB-A/Ly108 and CRACC appear to play
a similar role to 2B4 on human and murine
NK cells: mAb- or homotypic ligand–mediated
cross-linking enhances cytotoxicity and cy-
tokine secretion in vitro (69–71, 73, 112). Fur-
thermore, the cytotoxic function of NTB-A
on human NK cells requires coengagement of
complementary activating receptors, particu-
larly NKp46 or NKG2D (69). It is yet to be de-
termined whether CRACC acts predominantly
as a coreceptor, as opposed to an activating re-
ceptor, on resting NK cells; in vitro studies that
examined CRACC function utilized human NK
cell clones (70) or populations of murine NK
cells stimulated in vitro with IL-2 or in vivo
with poly(I:C) (71). Nonetheless, CRACC may
have a potentially important role in NK cell–
mediated tumor surveillance because CRACC+

tumor cells generated fewer lung metastases us-
ing the B16 melanoma model (71). Thus, 2B4,
NTB-A, and CRACC have important roles in
regulating the effector functions of human and
murine NK cells.
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The availability of SAP-deficient NK cells
and polyclonal lines from XLP1 patients made
it possible to investigate the requirement of
SAP for 2B4, NTB-A, and CRACC function.
Engagement of 2B4 or NTB-A on XLP1 NK
cells failed to increase target cell lysis, thereby
revealing a requisite role for SAP (69, 76, 78, 80,
188). Indeed, the profound defects in responses
to EBV-infected B cells have been attributed
to these defects; CD48, the ligand for 2B4, is
highly induced on B cells upon EBV infection
(107). Studies using Sh2d1a−/− mice also con-
firmed an obligatory requirement for SAP in
2B4-mediated activation of murine NK cells in
vivo and in vitro (168); however, this finding
is not universal (see below). Studies suggesting
that EAT-2, but not SAP, is required for NTB-
A-mediated cytotoxicity in an NK cell line (72)
contrast with the inability of XLP1 NK cells
to be activated through NTB-A (69). Such dif-
ferences possibly reflect the use of primary NK
cells versus transformed NK cell lines in which
SAP expression is reduced by siRNA.

Interestingly, Moretta and colleagues found
that mAb-mediated engagement of 2B4 or
NTB-A on XLP1 NK cells actually inhib-
ited the basal level of target cell lysis (69,
78, 189, 190). 2B4 also functioned as an in-
hibitory, rather than activating, receptor on im-
mature NK cells derived from in vitro culture
of CD34+ progenitors (189) and on decidual
NK cells (190). The differential outcomes of
2B4 engagement partitioned with SAP expres-
sion; i.e., SAP was absent or expressed at low
levels in those NK cells where 2B4 exhibited an
inhibitory function (189, 190).

In contrast to the requirement of SAP in
the activating function of 2B4 and NTB-A,
CRACC remained functional on SAP-deficient
human and murine NK cells, consistent with re-
ports that CRACC does not associate with SAP
(54, 70, 71).

EAT-2 Acts to Suppress the Activation
of Murine NK Cells

Although EAT-2 was initially found to asso-
ciate only with 2B4 in primary murine NK cells

(52), a phosphotyrosine-dependent interaction
between murine CRACC and EAT-2 was sub-
sequently reported by the same group using sta-
bly transfected cell lines (71). NK cells lacking
EAT-2 exhibited increased lysis of xenogeneic,
but not allogeneic, target cells, and height-
ened production of IFN-γ following engage-
ment of 2B4, CD16, and Ly49D (52). A weaker
enhancement in the cytotoxicity and cytokine
production was observed in ERT-deficient NK
cells (52). EAT-2 and to a lesser extent ERT
therefore act to suppress the effector function of
activated murine NK cells. However, more re-
cent data examining EAT-2-deficient mice on a
C57Bl/6 background support a positive role for
EAT-2 downstream of 2B4 and CD84, suggest-
ing that EAT-2 signaling may vary, depending
on the strain of mice or other factors, such as
activation status of cells (55).

The inhibitory function of EAT-2 is depen-
dent on two C-terminal tyrosine residues that
become phosphorylated in activated NK cells
(52). Interestingly, human EAT-2 contains only
a single tyrosine residue in its C terminus (56,
182). Because human EAT-2 appears to medi-
ate positive signaling through human CRACC
(54) and potentially NTB-A (72), the additional
tyrosine in murine EAT-2 could confer its neg-
ative signaling function.

Nonetheless, the cytotoxic activity of wild-
type murine NK cells against CRACC+ tar-
gets was also strictly dependent on EAT-2
and independent of SAP (71). Similar to the in-
hibitory function of EAT-2 (presumably down-
stream of 2B4), the two C-terminal tyrosine
residues of EAT-2 were also required for
CRACC-mediated activation of murine NK
cells (71). These features are consistent with
studies showing intact CRACC function in NK
cells derived from XLP1 patients (70) and with
biochemistry, suggesting that EAT-2, via the
recruitment and/or activation of PLCγ, reg-
ulates the activating function of CRACC (54,
178). EAT-2 may therefore regulate NK cell
effector function downstream of different asso-
ciating receptors by distinct mechanisms.

Interestingly, in cells lacking EAT-2,
CRACC functioned as an inhibitory receptor
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(71). This scenario resembles the findings that,
depending on the presence or absence of SAP,
2B4 and NTB-A can function either as acti-
vating or inhibitory receptors, respectively, on
human NK cells (69, 78, 189, 190). The cy-
toplasmic domain of murine CRACC contains
three tyrosine residues: of these, Tyr281 within
an ITSM is responsible for EAT-2 recruit-
ment and the stimulatory function of CRACC,
whereas Tyr261 is required for CRACC’s in-
hibitory function (71). Thus, similar to 2B4,
CRACC may switch from an activating to an
inhibitory receptor by recruiting different sig-
naling molecules to distinct binding sites within
its cytoplasmic domain.

Gene Targeting Reveals that 2B4
Functions as an Inhibitory Receptor
on Murine NK Cells

In contrast to data demonstrating that 2B4
functions as a stimulatory receptor, 2b4−/− NK
cells display increased cytotoxicity and exag-
gerated IFN-γ production toward CD48+ tar-
get cells (191, 192). In addition, wild-type NK
cells lysed CD48+ target cells less efficiently
than they lysed CD48− target cells. Restoring
2B4 expression inhibited the ability of 2b4−/−

NK cells to kill CD48+ target cells. Similarly,
CD48− target cells transfected with CD48 were
protected against NK cell–mediated cytotox-
icity (191, 192). These observations suggest
that signals delivered through murine 2B4 re-
strained NK cell effector functions. Paradox-
ically, homotypic NK cell interactions medi-
ated by 2B4 and CD48 were necessary to license
NK cells for their acquisition of cytotoxic effec-
tor function (193). Thus, although the general
consensus is that 2B4 functions as an inhibitory
receptor on murine NK cells, scenarios exist
whereby it functions to activate cytolysis, con-
sistent with data from human NK cells.

Studies using 2b4−/−, Cd48−/−, and wild-
type NK cells demonstrated that, depending on
the context of activation, in the absence of 2B4-
CD48 interactions, murine NK cells could lyse
each other (194). Thus, 2B4 can inhibit NK-
NK fratricide, providing a potential explanation

for reduced cytotoxicity and proliferation in
the absence of an activating signal. In addition,
recent data indicate that 2b4−/− NK cells can
kill activated CD8 T cells in vitro and in vivo,
suggesting that 2B4 plays a pivotal role in
maintaining tolerance of activated NK cells in
the early stages of persistent infections (195).

Although investigators have made attempts
to explain the molecular mechanisms that un-
derlie the inhibitory function of 2B4 on murine
NK cells, these mechanisms remain unresolved.
One potential explanation lies in the expression
of two forms of 2B4 in murine cells—the short
form has been proposed to exhibit activating
function, whereas the long form was thought
to be inhibitory (126, 128). The Schatzle group
(126, 128) further found that the inhibitory
function of 2B4 was independent of SAP (192).
This would be consistent with the proposal that
the function of murine 2B4 is regulated by the
recruitment of distinct adaptor proteins, with
SAP being required for the activating function
of 2B4, while EAT-2 and/or ERT promote the
inhibitory function of 2B4 (52, 71, 168, 196).
In addition, murine NK cells overexpressing
EAT-2 exhibited reduced lysis of susceptible
target cells and impaired 2B4-induced tyrosine
phosphorylation (52), suggesting that EAT-2
controls inhibitory signals from 2B4 in murine
NK cells, in contrast to its role downstream of
CRACC (54, 71).

Another group proposed that the switch
in activating versus inhibitory function of
2B4 resulted from differences in levels of
expression of 2B4 on the surface of effector
cells, the degree of 2B4 engagement by a
specific mAb or by CD48, and the relative
availability of SAP within the responding
cells. Thus, the inhibitory function of 2B4 was
dominant under conditions of relatively high
surface expression of 2B4 and low intracellular
levels of SAP (197), consistent with data from
SAP-deficient human NK cells (78, 189, 190)
and SAP-deficient murine NK cells (168).
However, data from another group indicate
that the activating function of 2B4 on human
NK cells positively correlates with its level of
surface expression (198). Although differences
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may result from the use of a T cell hybridoma
engineered to express 2B4 in the Chlewicki
et al. (197) study in which the consequences
of 2B4 engagement on IL-2 production were
assessed following TCR ligation, overall, the
relative levels of SAP and 2B4 appear likely to
contribute to 2B4 functional outcomes.

Additional explanations for the inhibitory
activity of 2B4 and NTB-A can be gleaned
from biochemical studies that examined in-
teractions between these receptors and sev-
eral SH2 domain–containing proteins. 2B4 and
NTB-A can recruit the inhibitory kinase CSK
and phosphatases SHP-1, SHP-2, and SHIP-1,
and interactions with these mediators could be
prevented by the presence of SAP (69, 78, 139,
160, 174). Thus, these receptors could provide
a negative signal to NK cells in the absence
of SAP via a phosphatase-dependent mecha-
nism. Indeed, it has become increasingly evi-
dent that there may be alternative modes of sig-
naling in the presence and absence of SAP (see
Figure 3e). Finally, recent data raise the in-
teresting possibility that interpretation of 2B4
function in murine cells is complicated by the
fact that CD48 can also bind CD2 in murine but
not in human cells (178). Thus, competition be-
tween receptors may contribute to phenotypes
elicited by engagement of 2B4.

CD8 T Cell–Mediated Cytotoxicity
and Cytokine Production

Activated CD8 T cells express SLAM, 2B4, and
Ly108, which have been associated with CD8
T cell effector function. Anti-SLAM stimula-
tion of human CD8 T cells augmented TCR-
mediated IFN-γ production, granule release,
and cytotoxicity (199, 200). However, because
SLAM mAbs can block homophilic interac-
tions, it will be important to evaluate SLAM
function in CD8 T cell–mediated cytotoxicity
using targets expressing or lacking SLAM.

Initial experiments suggested that 2B4-
CD48 interactions provide a costimulatory
function augmenting TCR-mediated CD8 T
cell proliferation and IL-2 production (201).
In addition, 2B4-expressing CD8 T cells

exhibit increased killing of both CD48-positive
and CD48-negative targets, suggesting that
2B4-CD48 interactions occurred between
CD8 T cells themselves as well as between
CD8 T cells and target cells (81, 202). In-
terestingly, EBV-specific CD8 T cell lines
from XLP1 patients exhibit decreased IFN-γ
production and lytic activity in response to
autologous EBV-transformed lymphoblastoid
cell line stimulation, suggesting that defects
in CD8 T cell cytotoxicity also contribute
to defective responses to EBV in XLP1 (62,
79). This defect correlated with impaired 2B4
and perforin polarization at the contact site
between the CTL and the CD48-expressing
target (62). SAP also localizes to the NK
cell–target cell contact site (146), suggesting
that SAP expression is critical for facilitating
2B4 localization for efficient target lysis.

Recent data suggest that SAP specifically af-
fects CD8 T cell cytolysis of B cell targets.
XLP1-derived EBV-specific T cell clones killed
EBV antigen–expressing fibroblasts yet exhib-
ited reduced lysis of EBV antigen–expressing
B lymphoblastic cell lines compared with con-
trol T cell clones. In addition, XLP1-derived
EBV-specific CD8 T cell clones produced con-
siderably more IFN-γ when incubated with
EBV peptide–pulsed fibroblasts compared with
B cell targets. The use of anti-NTB-A and anti-
2B4 reagents synergistically increased IFN-γ
production in response to antigen-expressing
B cells (75). Although it is not clear whether
these antibodies block receptor-ligand interac-
tions or stimulate receptors, the impaired CD8
T cell effector function likely reflects a broader
functional inability to effectively interact with
and lyse B cell targets that may contribute to
phenotypes of XLP1 (see below).

RESPONSES TO INFECTIONS

Although EBV does not infect murine cells,
Sh2d1a−/− mice have been challenged with nu-
merous pathogens. These studies have been
useful in dissecting specific defects associated
with SAP deficiency. Following lymphocytic
choriomeningitis virus (LCMV) or Toxoplasma
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gondii infection, Sh2d1a−/− mice developed in-
creased numbers of antigen-specific CD8 T
cells and a heightened effector response (18,
181). Sh2d1a−/− mice survive an acute LCMV
infection yet fail to resolve a chronic infection
and die (181, 203). Although the cause of death
was not fully delineated, it is likely due to CD8
T cell–mediated immunopathology along with
impaired antibody-mediated responses. In con-
trast, acute LCMV infection of Slam−/− mice
generated normal numbers of antigen-specific
CD8 T cells producing IFN-γ (204), although
chronic LCMV infection was not examined.

Sh2d1a−/− mice have also been infected with
murine gammaherpesvirus-68 (γHV-68) as a
model for EBV infection in XLP1. γHV-68 es-
tablishes a lytic infection in the oropharynx and
respiratory tract, followed by latency in B cells
(205). γHV-68 infection established latency in
Sh2d1a−/− mice, although there were reduced
memory B cell numbers that translated into a
reduced latent load (206). Interestingly, two
reports demonstrated elevated percentages of
splenic CD8 T cells as well as T cell infiltration
of the lung and liver associated with increased
tissue damage due to γHV-68 infection (49,
207). The accumulation of antigen-specific
CD8 T cells postinfection correlated with a
defect in RICD associated with reduced p73
expression (which can influence a mitochon-
drial cell death pathway) (208). These studies
suggest that SAP-deficient mice recapitulate
the CD8 T cell hyperproliferation and tissue
infiltration–mediated immune pathology seen
in XLP1 and propose a role for defective T cell
apoptosis in this process. Recently, defective
RICD, associated with decreased Bim expres-
sion, was observed in activated T cells from
XLP1 patients, as well as in peripheral blood
T cells in which SAP expression was reduced
by RNAi (27). These data further suggested
that SAP influenced RICD by affecting the
strength of TCR signaling. Similar results
were obtained by disruption of NTB-A ex-
pression, implicating NTB-A as an important
SAP-associated receptor mediating cell death
(27). In addition, studies using cell lines suggest
that SAP inhibits the antiapoptotic function

of valosin-containing protein (26). Although
the mechanism of cell death differed between
these reports, they support the premise that
hyperactivation of CD8 T cells in XLP1 results
from a failure of these cells to undergo RICD.

ALTERED T CELL
CYTOKINE PRODUCTION

Engagement of SLAM Family
Members on CD4 T Cells

One of the first recognized features of SLAM
was its ability to affect T cell cytokine pro-
duction. Stimulation with anti-SLAM mAbs
mediated TCR-independent proliferation and
IFN-γ production from previously activated
human CD4 T cells (58) and further polarized
human Th1 clones (60). Moreover, stimula-
tion with antimurine SLAM mAb (59, 120),
antihuman CD84 mAb (57), human CD84-Fc
(65), anti-NTB-A mAb, and NTB-A Fc (209)
all enhanced IFN-γ production in CD4 T cells
in conjunction with TCR ligation. In contrast,
homophilic SLAM interactions on a murine
thymoma cell line (150) and homophilic SLAM
associations between T cells and an artificial
APC line that expressed SLAM reduced
IFN-γ expression (61). These results suggest
that the antibody(ies) used in these earlier
studies blocked, rather than promoted, SLAM
function. T cells from Sh2d1a−/− mice show
increased IFN-γ production upon stimulation,
supporting a negative role for SLAM in the
regulation of IFN-γ (18, 61, 181).

However, perhaps more striking is the find-
ing that SAP-deficient CD4 T cells exhibit
a pronounced defect in IL-4 production, de-
spite normal proliferation and IL-2 production
(18, 61, 181). The defect in IL-4 expression
was also shown in T cells from Sh2d1a−/−Ifn-
γ−/− mice, uncoupling the IL-4 defect from
increased IFN-γ expression (61). Consistent
with an intrinsic defect in Th2 cytokine expres-
sion, Sh2d1a−/− mice have low levels of serum
IgE (18, 181) and are resistant to Leishmania
major infection, a parasitic infection requiring
Th2 cytokines for disease progression in the
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Balb/c background (181). Nonetheless, when
SAP-deficient CD4 T cells were activated in the
presence of Th2 polarizing cytokines, produc-
tion of IL-4, IL-13, and IL-10 was comparable
to wild-type cells (18, 61, 181), indicating that
responses to polarizing Th2 cytokines are in-
tact. Supporting this, Sh2d1a−/− mice mounted
a Th2 response to Schistosoma mansoni egg injec-
tion, a model in which IL-4 is initially produced
by cells other than T cells (210).

Consistent with the idea that SLAM family
members influence cytokine production, stim-
ulation of wild-type CD4 T cells with APCs
expressing SLAM leads to increased IL-4 (and
decreased IFN-γ) production (162). Moreover,
Slam−/− CD4 T cells exhibit reduced IL-4 pro-
duction (67, 161) and impaired responses in an
allergic asthma model (211). Recently, a newly
described subpopulation of CD4 T follicular
helper (TFH) cells located in the GC (212) was
found to require SLAM expression for IL-4
production, suggesting an important role for
SLAM in the regulation of TFH cytokine ex-
pression (68). In vitro, the IL-4 production de-
fect observed in Sh2d1a−/− CD4 T cells is more
pronounced than that in Slam−/− cells (67, 161),
suggesting that other receptors are involved.
Indeed, CD4 T cells from Ly108�exon2-3/�exon2-3

mice and Ly9−/− also exhibit impaired IL-4
production, although not to the same extent as
Slam−/− T cells (63, 64). However, although
SLAM, Ly108, and Ly9 may all contribute
to optimal CD4 T cell IL-4 production, the
Ly108�exon2-3/�exon2-3, Ly9−/−, and Slam−/−

mice were all generated on the 129 background
and backcrossed to B6 and thus still have the
129 SLAM locus. Thus, these effects may
need to be further evaluated on a pure genetic
background (see the section on Autoimmunity).

Retroviral reconstitution of SAP-deficient
CD4 T cells with the SAP(R78A) mutant
or CD4 T cells from SAP(R78A) knock-in
mice established that a SAP(R78)-dependent
pathway is important for TCR-mediated IL-4
production (61, 161). Although this domain
is critical for SAP-mediated Fyn binding and
recruitment to SLAM (143, 148, 152), it can
also mediate binding to PIX (163), NCK1

(158), and PKCθ; recent data support a role
for PKCθ in SLAM-mediated IL-4 production
(162). Indeed, even though Fyn has been
implicated in SAP-mediated pathways leading
to IL-4 expression, there are conflicting reports
as to how Fyn affects Th2 cytokine produc-
tion (213–215), and it is not entirely clear
which SAP(R78)-dependent pathway(s) are
instrumental in CD4 T cell IL-4 production.

HUMORAL RESPONSES

A cardinal feature of XLP1 is the development
of dysgammaglobulinemias that can progress
to frank hypogammaglobulinemia over time.
Although the nature of the humoral defects
in XLP1 has been enigmatic, the study of
Sh2d1a−/− mice has recently provided insight
into this phenotype.

Defects in Antibody-Mediated
Immunity

Examination of serum immunoglobulins
revealed that Sh2d1a−/− mice have low levels
of IgE (18, 181) but either normal or variably
reduced basal levels of IgM, IgG, and IgA
(48, 49), perhaps reflecting the cleanliness
of various animal facilities, the infectious
history of the mice, and the age of the animals
examined. Immunization with T-independent
antigens also gave relatively normal results
(210, 216). However, following immunization
with T-dependent antigens (50, 210, 216, 217)
or infection with various pathogens (17, 18,
49, 181, 203, 210, 217–219), Sh2d1a−/− mice
exhibit striking defects in long-term antigen-
specific antibody production. These results
are in accordance with an early study showing
defective responses to immunization with
the bacteriophage PhiX178 (a T-dependent
antigen) in XLP1 patients (220).

Sh2d1a−/− mice develop short-lived plasma
cells, albeit at reduced levels (17, 18, 219) yet ex-
hibit a striking defect in GC formation (17, 210,
216, 217, 219). As a consequence, Sh2d1a−/−

mice have markedly reduced numbers of
memory B cells and long-lived plasma cells
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(17, 18, 210, 219). It is now appreciated that
XLP1 patients also exhibit a paucity of GCs
in their lymphoid organs and have an absence
of IgG+ and IgA+ CD27+ memory B cells
(19–21).

Mechanisms for Humoral
Immune Defects

Many lines of evidence indicate a T cell–
intrinsic component to the humoral immune
and GC defects in Sh2d1a−/− mice, including
(a) analyses of T-dependent and -independent
immunizations; (b) lymphocyte transfers into
Rag2−/− (lymphocyte-deficient), SAP-deficient
(204, 210, 217), or irradiated C57Bl/6 mice
(17); (c) the generation of conditional gene-
targeted mice in which Sh2d1a is selectively
deleted in T or B cells (50); and (d ) the demon-
stration of normal in vitro behavior of B cells
from XLP1 patients (19, 20). Although several
groups have reported that SAP is expressed
in B cells, whether expression is limited to a
particular subset is not apparent (48, 101, 159,
217). Some data suggest that SAP expression
in B cells is required for humoral responses
(48, 217), but this has been controversial. The
nature of these differences is ambiguous but
could reflect the variation in genetic back-
ground of the mice as well as the assay systems
used. Interestingly, XLP1, some CVID, and
hypogammaglobulinemia patients show an
increase in transitional B cell populations (221).
Although these findings are not observed in
Sh2d1a−/− mice, they could be indicative of
B cell–intrinsic defects. Alternatively, this
phenotype may result from compensatory
mechanisms in these primary immunodefi-
ciencies, as reduced frequencies of memory B
cells and increased frequencies of transitional
B cells are also observed in immune-deficient
conditions unrelated to XLP1, such as HIV
infection (222) and STAT3 deficiency (223).

Considerable effort has been taken to as-
certain the T cell–intrinsic defect in antibody-
mediated responses in Sh2d1a−/− mice. The
production of Th2 cytokines by CD4 T cells

can influence humoral immunity, particularly
the generation of IgG1- and IgE-producing
cells in mice. However, in response to Schis-
tosoma mansoni egg immunization, Sh2d1a−/−

mice mounted a robust Th2 response yet failed
to generate GC B cells and displayed reduced
serum S. mansoni–specific antibody titers (210).
Although the SAP(R78A) mutant failed to im-
prove IL-4 production in vitro, GCs were res-
cued by the transfer of SAP-deficient antigen-
specific CD4 T cells that were retrovirally
reconstituted with either wild-type SAP or the
SAP(R78A) mutant (204, 210). Thus, the SAP-
dependent pathways required for GC forma-
tion appear independent of proteins that bind
SAP(R78). Nonetheless, the humoral defects
may not be completely distinct from the cy-
tokine defects associated with SAP deficiency.
T cells from XLP1 patients show decreased
production of IL-10, which has been shown
to affect antibody production (19). Similarly,
in mice, IL-4 can influence GC formation in
conjunction with IL-21 (224, 225): In vivo SAP-
deficient CD4 T cells exhibit reduced IL-21
production (83, 226, 227) as well as an absence
of IL-4-producing TFH cells in the GC (68).

SAP Deficiency Affects CD4 T Cell
Contacts with Cognate B Cells

The use of intravital imaging has recently pro-
vided insight into the nature of the GC defects
associated with SAP deficiency. Postimmuniza-
tion, SAP-deficient CD4 T cells were found
to interact with antigen-presenting DCs, pro-
liferate, upregulate markers of activation, and
migrate toward the T-B cell border comparably
to wild-type CD4 T cells (84). In striking con-
trast, whereas wild-type CD4 T cells formed
long-lasting mobile conjugate pairs with
antigen-presenting cognate B cells (84, 228),
SAP-deficient CD4 T cells primarily formed
short-lived conjugates (84). These data were
confirmed using an in vitro conjugation system
in which SAP-deficient T cells were unable
to maintain adhesion to antigen-presenting
B cells while sustaining conjugation to
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antigen-presenting DCs (84). Thus, although
SAP-deficient CD4 T cells become activated,
they are unable to deliver signals for GC
formation and maintenance. Consistent with
these observations, SAP expression was crucial
for later stages of T cell help for B cells (229),
although the timing may be antigen dependent
(218).

TFH cells are activated, antigen-specific
CD4 T cells that reside in the GC to help ini-
tiate and maintain a GC reaction. TFH cells
are characterized by the elevated expression of
CXCR5, PD-1 (programmed death-1), ICOS
(inducible costimulator), BTLA (B and T lym-
phocyte attenuator), SAP, CD84, Ly108, and
the transcription factor Bcl-6 as well as high
secretion of IL-21 (212, 230). SAP-deficient
CD4 T cells initially upregulate TFH markers
postimmunization (83, 84); however, TFH cell
markers are not sustained, and IL-21 produc-
tion is reduced (68, 83, 226, 227). Despite the
detection of some SAP-deficient T cells in GCs
(17, 229), intravital imaging provided evidence
that SAP-deficient CD4 T cells are neither ef-
ficiently recruited nor retained within the GC
(processes dependent on cognate T-B cell in-
teractions) and fail to become functional TFH

cells in the GC (84). Data suggest that sus-
tained B cell contact is required for efficient
development of the TFH effector cell lineage
(84, 231–233). Impaired T-B cell adhesion may
therefore prevent a final stage of TFH cell mat-
uration in SAP-deficient mice. However, a re-
cent study has demonstrated that the nature of
immunization can dictate the B cell require-
ment for TFH cell development. Repeated de-
livery of peptide antigen permitted the genera-
tion of cells expressing TFH markers not only in
Sh2d1a−/− mice, but also in mice whose B cells
were unable to present antigen (MHC class II
deficient) or receive cognate T cell help (CD40
deficient) (226). Thus, final TFH differentia-
tion may require prolonged antigen stimulation
rather than B cell–specific signals per se.

Transcriptional profiling and phenotypic
analyses indicate that TFH cells express ele-
vated levels of SAP and SLAM family members

including CD84, Ly108/NTB-A, and Ly9
(83, 226, 230, 234, 235). CD84 and Ly108 are
also upregulated on GC B cells (83). Indeed,
CD84 plays a key role in sustaining T-B cell
contacts, TFH cell function, as well as optimal
GC formation, as these processes are defective
in Cd84−/− mice, although not to the same
extent as seen with SAP deficiency (83).
Moreover, in vitro conjugation experiments
revealed that both CD84 and Ly108 contribute
to T-B cell adhesion (83).

Additional data suggest that although
the integrins LFA-1 (lymphocyte function–
associated antigen-1) and VLA-4 (very late
antigen-4) are the primary adhesive receptors
implicated in T cell–DC interactions and early
T-B cell contacts, sustained T-B cell interac-
tions also require SAP, CD84, and Ly108. CD4
T cells adhere to CD84 and Ly108 in a SAP-
dependent manner, providing further support
that these SLAM family members act as ad-
hesion receptors (83). Intriguingly, CD84 and
Ly108 are two SLAM family members with the
strongest interactions (lowest Kds) (111, 117),
perhaps contributing to their roles in the highly
dynamic process of T-B cell interactions.

However, T-B cell adhesion may not be
the only SAP-mediated contribution to GC
formation. Recently, Crotty and colleagues
(68) described a phenotypically distinct GC
TFH subset that was dependent on SLAM
expression for IL-4 production during a viral
infection. Whether SLAM family members
contribute to other aspects of humoral im-
mune responses beyond GC formation, and
the potential contribution of B cells to such
processes, will be of interest.

Nonetheless, data from other systems also
support the role of SLAM family members as
adhesive receptors. NK cells exhibit synergistic
binding to target cells expressing intercellular
adhesion molecule (ICAM)-1 and CD48 (82,
85). T cells overexpressing SLAM exhibited
increased clumping (144), and T cell lines
from XLP1 patients did not efficiently form
aggregates upon PMA treatment (237). Inter-
estingly, these XLP1 cells were maintained in
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culture by stimulation with EBV-transformed
B cells—whether this exacerbated this potential
adhesion phenotype is not known. Finally,
CD84 participates in platelet spreading,
whereas SLAM contributes to stability of
platelet aggregates in vitro and thrombus for-
mation in vivo (44). Thus, platelet, NK/CD8
T cell–target cell, and T-B cell interactions
provide examples in which cell-cell interac-
tions mediated by integrins are associated with
secondary contacts mediated by SLAM family
members.

Notably, this selective defect in T cell in-
teractions with B cells, but not with DCs, also
provides intriguing insight into the phenotypes
of XLP1: T cells from XLP1 patients become

activated or even overactivated, but CD8 T
cells fail to effectively kill EBV-infected B
cells (75), and CD4 T cells fail to provide help
to B cells for GC formation (19). Moreover,
XLP1 patients have a high incidence of B cell
lymphomas (34, 237), which could reflect a
defect in immunosurveillance toward B cells
(Figure 4). Thus, the phenotypes of XLP1 may
be interpreted in the context of global defects
associated with B cell interactions. Even the
defect in NKT cell development has interesting
parallels (see the Hematopoietic Development
section), because NKT cells are selected
through lymphocyte-lymphocyte interactions.
Whether direct lymphocyte-lymphocyte
interactions contribute to RICD is less clear.

 

? cell

 
XLP

Development of NKT cells and

innate T cell populations:

SLAM, Ly108

Impaired germinal center

responses, TFH development;

CD84, Ly108, TFH IL-4 production:

SLAM

Impaired CD8 T cell–

mediated cytotoxicity:

2B4, NTB-A

Impaired NK cell–

mediated cytotoxicity:

2B4, NTB-A

RICD:

NTB-A
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Figure 4
Cellular defects in XLP1 patients and the SLAM receptor family member implicated in the phenotype. The
phenotypes of XLP1 are shown in the context of the lymphocyte-lymphocyte interactions affected. XLP1
patients exhibit impaired NK- and CD8-mediated killing of EBV-infected B cell targets, diminished
humoral responses (reduced numbers of memory B cells) due to impaired T-B cell interactions, impaired
development of NKT cells, and reduced sensitivity to reactivation-induced cell death (RICD). Whether
RICD involves direct lymphocyte-lymphocyte interactions is unknown. SAP-deficient mice recapitulate
several features of XLP1 and have revealed previously unappreciated XLP1 characteristics, providing insight
into the B cell–centric phenotypes of this disease as well as a further understanding of normal immune
physiology. (Abbreviations: EBV, Epstein-Barr virus; NK, natural killer; NKT, natural killer T; RICD,
reactivation-induced cell death; SAP, SLAM-associated protein; SLAM, signaling lymphocyte activation
molecule; TFH, T follicular helper cell; XLP, X-linked lymphoproliferative syndrome.)
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HEMATOPOIETIC
DEVELOPMENT

Expression of SLAM Family Members
on Hematopoietic Stem Cells

The selective expression of SLAM and
2B4 on long-term reconstituting hematopoi-
etic stem cells, multipotent progenitors, and
oligolineage-restricted progenitors in the bone
marrow and fetal liver of mice has refined
the isolation of specific progenitor populations
(238–240). However, as hematopoiesis appears
to be globally intact in the absence of SAP,
SLAM, or 2B4, the relevance of this expres-
sion is not clear. Nonetheless, Sh2d1a−/− mice
do show defects in the development of certain
lymphocyte lineages.

Development of T Cells with
Innate-Like Characteristics

Conventional thymocytes undergo positive
selection by interacting with cortical epithelial
cells. However, there are subsets of thymocytes
with unconventional properties that are se-
lected by hematopoietic cells, most likely other
double-positive (DP) cells (241). Cells selected
in this manner tend to traffic to nonlymphoid
tissues and demonstrate phenotypic and func-
tional characteristics similar to cells of the
innate immune system, including expression
of invariant antigen receptors, memory cell
markers, and robust effector function. Perhaps
the best recognized of these populations are
NKT cells, which are selected by lipid antigens
presented by CD1d on other DP thymocytes,
express an invariant TCR (Vα24+Vβ11+ in hu-
mans, Vα14+ in mice), and rapidly secrete high
levels of cytokine following stimulation (241).
Previous data demonstrated that Fyn−/− mice
display reduced NKT cell numbers (242, 243).
Strikingly, both Sh2d1a−/− mice and XLP1
patients exhibit an almost complete absence of
these cells (22–24, 241). In Sh2d1a−/− mice, the
block in NKT cell development occurs early
following rearrangement of the canonical Vα14
TCR and initiation of TCR signaling for posi-

tive selection (86, 244, 245). SAP(R78A) knock-
in mice, competitive bone marrow chimeras us-
ing SAP(R78A) bone marrow, and SAP(R78A)
cells cultured on OP9-delta cells also generated
reduced numbers of NKT cells. Nonetheless,
the SAP(R78)-mutant NKT cells that devel-
oped were still able to produce cytokines rapidly
(245), indicating that a SAP(R78) pathway is
required for optimal NKT cell development
but not for functional cytokine responses.

Evaluation of the development of these
innate-like T cells in gene-targeted mice has
provided some of the strongest evidence for re-
dundancy between SLAM family members con-
tributing to phenotypes associated with SAP
deficiency. Although Slam−/− and Ly108−/−

mice have either normal or only slightly
reduced NKT cell numbers (64, 67, 87),
mixed bone marrow chimeras using cells from
Slam−/− mice and Ly108−/−Cd1d−/− mice or
from Ly108−/− and Slam−/−Cd1d−/− mice pro-
vided evidence that the combined lack of SLAM
and Ly108 caused a striking reduction of NKT
cells. These “pseudo double knockouts” of
SLAM and Ly108 forced selection so that nei-
ther receptor could be engaged in trans (87).
Recently, investigators found that the tran-
scription factor c-Myb plays a selective role in
NKT cell development by regulating cell sur-
vival and expression of CD1d, SAP, SLAM, and
Ly108 (246). Interestingly, polymorphisms in
the SLAM locus, specifically SLAM and Ly108,
in the NOD background correlate with reduced
NKT cell numbers (247) and impaired cytokine
secretion (248). Introgression of the B6 Nk1
allele (SLAM locus) from B6 onto the NOD
background improved NKT cell number and
function, although it did not alter the course of
spontaneous diabetes (249). More recent data
have provided evidence that the Slam haplo-
type also influences liver NKT cell number and
function (250).

SAP is also important for the differentiation
of other innate T cells, including an unusual
subpopulation of CD4 T cells (90). Human
CD4 T cells can be selected on MHC class
II+ hematopoietic cells in the thymus (251,
252). Although this does not occur in mice,

www.annualreviews.org • SLAM Family Receptors and SAP Adaptors 687

A
nn

u.
 R

ev
. I

m
m

un
ol

. 2
01

1.
29

:6
65

-7
05

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 U
ni

ve
rs

ity
 o

f 
N

ew
 S

ou
th

 W
al

es
 o

n 
05

/0
4/

11
. F

or
 p

er
so

na
l u

se
 o

nl
y.



IY29CH22-Schwartzberg ARI 7 February 2011 22:42

transgenic expression of MHC class II trans-
activator in T cells permits the generation of
thymocyte-selected CD4 T cells that display
innate-like cell characteristics, including rapid
expression of cytokines. Like NKT cells (253,
254), these thymocyte-selected innate CD4 T
cells express the transcription factor promye-
locytic leukemia zinc finger (PLZF) (255).
Notably, thymocyte-selected innate CD4 T
cells are dependent on SAP and partially on
Ly108 for their development (90, 256).

Reduced PLZF expression also severely
affects NKT cell maturation and function
(253, 254). Nonetheless, transgenic PLZF
expression did not rescue NKT cell differ-
entiation in Sh2d1a−/− and Fyn−/− mice.
Furthermore, PLZF-mediated acquisition
of effector/memory phenotypic changes in
conventional T cells was not dependent on
either SAP or Fyn (257), consistent with the
notion that PLZF affects a different, later stage
of NKT cell maturation involving acquisition
of effector function.

Mice with TCR signaling defects due to a
lack of the tyrosine kinase Itk or a mutation
that affects the Itk-binding site of SLP-76, as
well as mice deficient in Inhibitor of differentia-
tion gene 3 (Id3), develop a population of CD8
T cells that exhibit characteristics of innate-
like cells including the expression of memory
cell markers and rapid production of cytokines
(258–261). SAP is also required for the devel-
opment of these innate-like T cells in Itk−/−

and Id3−/− mice, although the requirements for
SLAM family members have not been evalu-
ated (88, 262). Interestingly, recent data sug-
gest that this CD8 T cell population found in
Itk−/−, Kruppel-like factor2−/−, and Id3−/− mice
develop by a non–cell autonomous mechanism
that results from IL-4 produced by increased
numbers of innate-type PLZF+ CD4 T cells
that also arise in these mice (262, 263). These
data argue that it is the CD4-innate T cell pop-
ulation that requires SAP for its selection or
development, parallel to findings for invariant
NKT cells.

Itk−/− and Id3−/− mice, as well as mice
with SLP-76 tyrosine mutations, also have an

increased percentage of Vγ1.1+Vδ6.3+ γδ T
cells that display increased PLZF and IL-4 ex-
pression (86, 89, 91, 262, 264, 265). These cells
are responsible for the increased IgE levels and
GCs in Itk−/− mice (264). This subset is also re-
duced in Sh2d1a−/− and Id3−/−Sh2d1a−/− mice
(86, 89, 91). Whether these innate-type lym-
phocytes influence phenotypes observed in the
absence of SAP is unknown.

B Cell Development

Within the bone marrow, when B cells ex-
pressing an autoreactive BCR encounter self-
antigen, they either are deleted via apoptosis
or undergo receptor editing to select for BCR
specificities that no longer react strongly with
self-antigen (266). Interestingly, expression of
the NZW Sle.1b locus on the B6 background
impaired normal tolerance mechanisms so that
autoreactive B cells now entered the periphery
(127). Given the link to altered Ly108 isoform
usage, these findings suggest that Ly108 iso-
forms or other polymorphisms in genes encod-
ing SLAM family members influence the B cell
response to BCR ligation during development,
thereby altering critical steps of tolerance in-
duction. Whether SAP contributes to this pro-
cess is unknown.

AUTOIMMUNITY

A less frequent manifestation of XLP1 is the
development of autoimmune disorders, includ-
ing vasculitis (16). Nonetheless, SAP deficiency
has been shown to ameliorate autoimmune
disease models associated with autoantibody
production, including pristine-induced lupus
(216), Faslpr mutation (267), and mutation
of Roquin (227). In contrast, Sh2d1a−/−

mice demonstrated enhanced susceptibility
to a murine model of multiple sclerosis,
EAE (experimental allergic encephalomyeli-
tis), induced by immunization with myelin
oligodendrocyte glycoprotein38-50 peptide in
complete Freund’s adjuvant (216). Given the
decreased interactions between T and B cells
resulting from SAP deficiency, it is of interest
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that a population of IL-10-producing “regula-
tory B cells” has recently been described that
decreases EAE manifestations (268). In other
studies, infusion of NTB-A Fc delayed onset
of EAE in susceptible mice (209); however, it
is unclear if this protein blocked homophilic
interactions or resulted in Ly108 signaling.

Altered Expression of SLAM
Family Members in Human
Autoimmune Disorders

Human studies have demonstrated altered ex-
pression of SLAM family members in different
autoimmune states, including elevated SLAM
expression on monocytes and macrophages
within the inflamed colon from Crohn’s disease
patients (269) and on synovial tissue lympho-
cytes (270) and increased CRACC expression
on B cells from patients with systemic lupus ery-
thematosus (SLE) (271). Although alteration in
receptor expression could reflect the chronic
activation status of the cells and the inflam-
matory environment, genome-wide association
studies have also demonstrated association of
certain SLAM haplotypes with increased sus-
ceptibility to autoimmune disorders (272). Re-
cently, a LY9 variant [with a nonsynonymous
change Val/Ile in the consensus ITSM, which
may affect SAP and SHP-1 binding and stability
(273)] has been proposed to contribute to SLE
susceptibility (274). Variants in 2B4 have also
been identified as genetic risk factors for SLE
and rheumatoid arthritis (275).

Murine Models of Autoimmunity

Murine models have provided further evidence
that polymorphic variations in the SLAM
family of receptors contribute to the devel-
opment of autoimmunity. Genetic studies of
lupus susceptibility in crosses between the
NZW and C57Bl/6 strains revealed that a
locus that predisposes to the development of
ANAs (Sle.1b) maps to the SLAM gene cluster:
A C57Bl/6 congenic strain with NZW-derived
SLAM locus (Sle.1b) was sufficient to mediate
loss of tolerance and generate high ANAs (123,

276–278). Mouse genomic sequences indicate
that two haplotypes exist in the region encom-
passing the Slam locus: One haplotype occurs
in C57Bl/6 and the second in most other labo-
ratory strains, including 129, NOD, and NZW
(123, 276). Because many mouse gene-targeting
experiments are performed in embryonic stem
cells derived from the 129 strain and then
backcrossed to C57Bl/6, this association is an
important consideration for evaluating autoim-
mune phenotypes. Extensive polymorphisms
in SLAM family members exist between lupus-
susceptible and -nonsusceptible mouse strains,
including the expansion of the 2b4 gene from
one to four copies. Following antigen-receptor
engagement, the Ly108.1 splice isoform that
is preferentially expressed in lupus-susceptible
strains demonstrates increased phosphory-
lation compared with Ly108.2 (Figure 2)
(124). Thus, altered expression of Ly108
isoforms may contribute to both enhanced
TCR-mediated responses and impaired B cell
tolerance, predisposing the immune system
for self-reactivity (123, 127). In addition, the
Sle.1b haplotype exacerbates the autoimmune
phenotype associated with either the Yaa
translocation (TLR7 duplication) (279) or the
Faslpr mutation (280). The lymphoproliferative
disease in the B6.Sle1b.Faslpr mice was asso-
ciated with an imbalance in the PI3K/PTEN
signaling axis leading to elevated mTOR acti-
vation (280). Notably, SLAM cross-linking on
B and T cells activated AKT (59, 155), a com-
ponent of the PI3K-mTOR cascade. These
data complement observations that SAP defi-
ciency ameliorates disease in models associated
with autoantibody production and decreases
autoantibody production in Sle.1b mice (281).

Within the natural mouse population,
SLAM family members CD48, CD229 (Ly9),
and CD84 display extensive polymorphisms
in the ligand-binding domain (135, 282) and
thus could influence stability and duration
of homophilic interactions. Polymorphisms in
SLAM family members may have been se-
lected as advantageous for responses to infec-
tious agents, with the unfortunate consequence
of increased susceptibility to autoimmunity.
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Differences Between SAP and SLAM
Receptor Deficiencies

The data reviewed here provide clear evidence
that SAP not only is recruited to SLAM fam-
ily members to mediate signal transduction but
also prevents the coupling of receptors to in-
hibitory phosphatases. Therefore, the pheno-
types associated with the SAP deficiency may
be due to alternate (phosphatase and/or EAT-
2/ERT) signals rather than to a loss of signal,
as seen in deficiencies of individual SLAM fam-
ily members. Indeed, loss of a single SLAM
family member has not fully recapitulated a
SAP-deficient phenotype. However, functional
redundancy between family members has been
documented in NKT cell development (87)
and in T-B cell adhesion (83). Thus, multi-
ple SLAM family members likely contribute
to SAP-mediated and SAP-independent events
within a given cell. Moreover, as discussed be-
low, SLAM family members can signal in cells,
such as in the myeloid lineages, that do not ex-
press SAP.

LINK BETWEEN INNATE AND
ADAPTIVE IMMUNITY

SLAM Is a Receptor for Measles Virus

CD46 is expressed on all nucleated cells and
was initially identified as a receptor for measles
virus (MV), yet several strains can infect cells in-
dependently of CD46 expression (283). SLAM
has been found to interact with MV hemag-
glutinin protein and to permit entry into the
host cell (284). The generation of transgenic
mice expressing SLAM under the control of the
mouse Lck or CD11c promoter, as well as the
creation of a SLAM knock-in mouse (by replac-
ing the murine V with the human V domain),
has established MV infection in mice and repro-
duced the lymphotropism and immunosuppres-
sion that is observed in human infection (285).
Because some XLP1 patients have perturbed
anti-MV immunity (9), it will be of interest to
examine MV infection in SLAM knock-in mice
on a SAP-deficient background.

Neutrophils

Although Sh2d1a−/− mice and XLP1 patients
do not exhibit any defects in neutrophils, a
striking feature of Ly108�exon2-3/�exon2-3 mice
is aberrant neutrophil function associated with
elevated IL-12, TNF-α, and IL-6 production
with reduced production of reactive oxygen
species and bacterial killing (64). As a result,
Ly108�exon2-3/�exon2-3 mice are highly suscep-
tible to Salmonella typhimurium infection (64),
indicating that Ly108 is involved in the oxida-
tive burst in neutrophils. It remains to be de-
termined how Ly108 transmits signals within
neutrophils. Although human neutrophils do
not appear to express NTB-A, it will be inter-
esting to ascertain if these cells alter receptor
expression following activation.

Macrophages and Dendritic Cells

DCs are important APCs critical for T-
dependent immune responses. DCs express
EAT-2 but not SAP and also express
Ly108/NTB-A, Ly9, and SLAM (40, 56, 183,
286). Stimulation of human CD40L-activated
DCs with anti-SLAM mAb augmented secre-
tion of IL-8 and IL-12 but had no effect on
IL-10 (286). However, SLAM-SLAM engage-
ment reduced IL-12 production from CD40L-
stimulated DCs and impaired Th1 CD4 T cell
differentiation (45), suggesting that the anti-
SLAM reagent blocked homophilic association.
Using a fibroblast cell line as the APC, re-
searchers also found that SLAM expression de-
creased the amount of CD40L expressed on T
cells (210).

Macrophages express Ly9, Ly108, CD84,
and SLAM. Recent data suggest that CD84
engagement may influence cytokine produc-
tion by LPS-activated bone marrow–derived
macrophages (287). LPS, but not CpG, stim-
ulation of Slam−/− macrophages resulted in
reduced nitric oxide, IL-12, and TNF-α yet
increased IL-6 production, whereas treatment
with an antimurine SLAM antibody increased
IL-12 production (67). Slam−/− mice also
showed enhanced susceptibility to Leishmania
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and impaired clearance associated with re-
duced IL-12 production by macrophages (67).
Recently, SLAM was shown to function as
a bacterial receptor recognizing the outer
membrane proteins OmpC and OmpE from
gram-negative bacteria (92). This study also
provided evidence that SLAM regulates phago-
some maturation and the production of free
radicals by the NOX2 complex in macrophages,
suggesting interesting parallels with Ly108 in
neutrophils (92). CD48 is one of the receptors
for FimH, a lectin on the pili of some En-
terobacteriaceae (288). Thus, SLAM-related
receptors may have dual functions as microbial
sensors, providing further links between innate
and adaptive immune responses.

CONCLUSIONS

The past several years have seen an explosion
of data uncovering the roles of SLAM fam-
ily members in immune cell function and their
roles in the diverse phenotypes of XLP1. Many
of these insights are derived from gene-targeted
mice. In particular, the role of SLAM family
members in lymphocyte-lymphocyte interac-

tions has shed substantial light on the pheno-
types of humoral immunodeficiency and the se-
lective nature of the cytolytic defects against
EBV-infected B cells. Studies of cells from
XLP1 patients have also revealed new insights
into the disease, particularly the effects of SAP
on lymphocyte survival and on cytolysis of
EBV-infected B cell targets. Together, these
studies suggest that XLP1 is a disease mediated
by defective interactions between lymphocytes.

In parallel, studies of XLP1 and mouse
models have revealed new insight into basic
immune cell function, contributing to knowl-
edge regarding TFH cells and their roles in GC
formation, as well as delineating requirements
for the development of subclasses of innate
type T lymphocytes. The study of SAP and the
related adaptor EAT-2 has furthered mech-
anistic analyses of NK cell cytolysis and the
dual nature of signaling through SLAM family
members in the presence or absence of these
adaptors. Together, these studies highlight
the importance of the SLAM family members
and SAP-related adaptors and their profound
influence on immune system development and
function.
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