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One of the most important metabolic actions of insulin is

catalysing glucose uptake into skeletal muscle and adi-

pose tissue. This is accomplished via activation of the

phosphatidylinositol-3-kinase/Akt signalling pathway

and subsequent translocation of GLUT4 from intracellular

storage vesicles to the plasma membrane. As such, this

represents an ideal system for studying the convergence

of signal transduction and protein trafficking. The GLUT4

translocation process is complex, but can be dissected

into at least four discrete trafficking steps. This raises the

question as to which of these is the major regulated step

in insulin-stimulated GLUT4 translocation. Numerous

molecules have been reported to regulate GLUT4 traffick-

ing. However, with the exception of TBC1D4, the molec-

ular details of these distal signalling arms of the insulin

signalling network and how they modify distinct steps of

GLUT4 trafficking have not been established. We discuss

the need to adopt a more global approach to expand and

deepen our understanding of the molecular processes

underpinning this system. Strategies that facilitate the

generation of detailed models of the entire insulin sig-

nalling network will enable us to identify the critical

nodes that control GLUT4 traffic and decipher emergent

properties of the system that are not currently apparent.
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Mammals have evolved an exquisite homeostatic mecha-
nism for maintaining a stable blood glucose concentration.
In the fasting state, blood glucose is supplemented via
hepatic glycogenolysis, where liver glycogen is broken
down to glucose, or via gluconeogenesis, where 3C inter-
mediates, such as lactate, are converted back to glucose

in the liver. After a meal, the peptide hormone insulin is
secreted from β-cells located in the islets of Langerhans
in the pancreas. Insulin inhibits glucose output from the
liver and promotes the uptake of glucose from the blood
stream into skeletal muscle and adipose tissue. Insulin
signals to a number of cellular processes such as protein
synthesis, gene transcription and metabolism. The most
significant effect of insulin on glucose metabolism is the
regulation of GLUT4 trafficking and consequently glucose
uptake. The reason for this is that although the intracellular
pathways that determine the fate of glucose, such as gly-
colysis, glycogen synthesis and lipogenesis, are regulated
by insulin, it is widely believed that glucose transport is rate
limiting for most of these processes. Furthermore, the rel-
ative contribution of insulin-stimulated post-translational
modifications and allosteric regulation by metabolites in
controlling the activity of enzymes that regulate glucose
metabolism remains unclear. Recent data have demon-
strated that allosteric regulation of glycogen synthase (GS)
by glucose-6-phosphate may be more important for reg-
ulation of its activity than phosphorylation by GSK-3β (1).
Thus, glucose transport is the key step in insulin-regulated
glucose metabolism and it is clear that defects in this
process in muscle and adipose tissue represent a very
early defect in the onset of insulin resistance (2). In this
article, we will focus on the intersection between insulin
signalling and GLUT4 trafficking. As such, we will devote
a significant section of this review to critically analyse the
current data implicating the Rab GTPase activating pro-
teins, TBC1D4/AS160 and TBC1D1, in insulin-regulated
GLUT4 trafficking. There have been a number of recent
review articles discussing our current understanding of
the insulin signalling pathway (3–5). We highlight the key
questions that remain regarding the junctions between
the insulin signalling network and GLUT4 trafficking path-
way and propose that a global systems biology strategy is
necessary to fully decipher how insulin regulates cellular
processes.

The Insulin Signalling Pathway

In insulin-responsive tissues such as skeletal muscle, adi-
pose tissue and liver, insulin signalling is initiated following
binding of insulin to the α-subunit of the insulin receptor
on the cell surface. This results in autophosphorylation
of the β-subunit and activation of the receptor intrin-
sic tyrosine kinase activity (6). The active tyrosine kinase
phosphorylates insulin-receptor substrate (IRS) proteins.
Phosphorylated IRS proteins recruit phosphatidylinositol-
3-kinase (PI3K) through the p85 regulatory subunit leading
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to the activation of the catalytic subunit p110. PI3K catal-
yses the formation of phosphatidylinositol (3,4,5)P3 from
phosphatidylinositol (4,5)P2 on the cytosolic leaflet of
the plasma membrane (PM). The connector enhancer
of KSR-1 protein (CNK1) was recently implicated in regu-
lating insulin signalling through IRS-1 and PI3K by being
part of a complex that indirectly stimulates the activity
of phosphatidylinositol-4-phosphate 5-kinases at the PM.
Depletion of CNK1 via siRNA resulted in loss of IRS-1
and Akt phosphorylation, presumably due to a reduction
in PI(4,5)P2 at the PM, which are important for both the
recruitment of IRS-1 to the PM via its PH domain and
providing substrate for PI3K (7).

PI(3,4,5)P3 acts as a docking site for the serine/threonine
kinase Akt, a member of the AGC kinase family. Follow-
ing its recruitment to the cell surface, Akt is activated
(as described below) resulting in the Akt-dependent phos-
phorylation of many substrates. In adipose and muscle,
this results in the translocation of the GLUT4 glucose
transporter from the intracellular storage compartment
to the PM; enhancing glucose uptake into these tissues
(reviewed in 8). In addition to glucose uptake, most, if not
all, of insulin’s metabolic effects are regulated by Akt. For
example, Akt-dependent phosphorylation of GSK-3β leads
to activation of glycogen synthase (GS) and enhanced glu-
cose storage as glycogen. The classical insulin signalling
cascade, comprising numerous cellular signalling events,
is quite well understood. Despite this, additional compo-
nents of the insulin signalling network are continuously
being identified. Furthermore, there remains a lack of
information on some aspects of insulin signalling, particu-
larly on signalling events downstream of Akt that directly
mediate GLUT4 trafficking to, and fusion with, the PM.

The Protein Kinase Akt

Activation of Akt is a critical step in the control of insulin
signalling. Indeed, the central role of Akt was exemplified
by a study reporting that specific activation of Akt, inde-
pendently of any upstream signalling, is sufficient to drive
GLUT4 storage vesicles (GSVs) to fuse with the PM of 3T3-
L1 adipocytes to a similar extent as insulin stimulation (9).
However, this artificial system may override the require-
ment for normal biological regulatory mechanisms. Active
Akt, targets a series of downstream substrates that medi-
ate the diverse cellular functions of the insulin signalling
pathway. The challenge is to dissect the full repertoire of
substrates and to link them to a biological function. As
described below there is considerable evidence now to
suggest that Akt regulates GLUT4 translocation to the PM.
While some Akt substrates involved in this process have
been identified, the complex nature of GLUT4 trafficking
suggests that others remain to be discovered.

There are three isoforms of Akt in mammals; each shares
the same domain organization and are encoded by sepa-
rate genes sharing greater than 85% homology (10). Akt1

is ubiquitously expressed, while expression of Akt2 is
highest in insulin-responsive tissues such as heart, liver,
kidney and skeletal muscle (11). The expression of Akt3
is limited to the brain and testes (12). The varied expres-
sion profile of the different isoforms raised the possibility
that each isoform plays a unique role in tissue-specific
signalling. Several studies in knock-out mice missing a
single Akt gene have supported this hypothesis, with only
deletion of Akt2 resulting in a specific defect in glucose
metabolism (13). Consistent with these data, Akt2 has
been reported to be preferentially recruited to the PM
in response to an insulin stimulus (14). The different iso-
forms of Akt are thus best described as having distinct
cellular functions while displaying a degree of redundancy
between isoforms. Furthermore, there is a nonlinear rela-
tionship between Akt activation and physiological output;
the activation of only a small proportion of total cellular
Akt is sufficient for a maximal physiological response (15).

Activation of Akt

The relocalization of Akt to the PM from the cytosol
is crucial for its activation; Akt mutants that are
constitutively targeted to the PM are constitutively
active (16). Binding of PI(3,4,5)P3 to the PH domain
induces a conformational change in Akt, which is thought
to be a necessary step prior to its phosphorylation at Thr308

by 3-phosphoinositide dependent protein kinase-1 (PDK-
1) (17–19). PDK-1 appears to be constitutively active, and
is found both at the PM and in the cytosol, implying that it
is not a regulated node in the control of Akt activity (20,21).
An intramolecular interaction between the PH and
kinase domains of Akt has been suggested to prevent
phosphorylation of Thr308 by PDK-1 and thus activation.
This repression is relieved by binding of PI(3,4,5)P3 by the
PH domain, inducing a conformational change in Akt and
allowing activation via PDK-1 (19). A recent study using
Förster resonance energy transfer suggested that Akt
binds PDK-1 in the cytosol, and this complex translocates
to the PM after growth factor stimulation (19). This pre-
activation complex may allow an extremely rapid activation
of Akt upon translocation to the PM. Phosphorylation of
Thr308 by PDK-1 causes a conformational change in the
activation loop, causing it to ‘flip out’ of the active site
allowing binding of both ATP and the substrate protein.

A second regulatory phosphorylation site, Ser473, is
present in the C-terminal hydrophobic motif of Akt. The
search for the kinase that phosphorylates Ser473, the so-
called ‘PDK-2’ has been long and controversial. Various
candidate molecules have been proposed, including pro-
tein kinase Cα (PKCα), the integrin-linked kinase, ATM,
DNA-PK and autophosphorylation by Akt itself (reviewed
in 22). However, the mammalian target of rapamycin
(mTOR) in complex with mLST8, mSin and rictor (the
mTORC2 complex) has emerged as a strong candidate for
the Ser473 kinase. Sarbassov et al. (23) reported that the
mTORC2 complex is necessary for Ser473 phosphoryla-
tion and directly phosphorylates Akt at Ser473. In addition,
mTORC2 was shown to be the sole kinase responsible for
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Ser473 phosphorylation in the 3T3-L1 cell line (24). Tissue-
specific knock-out of rictor in skeletal muscle and adipose
tissue resulted in decreased insulin-stimulated glucose
uptake and GLUT4 translocation (25,26). Phosphorylation
of Ser473 has been proposed to play a dual role in the acti-
vation of Akt, acting as a docking site for PDK-1 in other
AGC family kinases (27) and as an allosteric regulator of
Akt activity. However, it has also been reported that phos-
phorylation of Thr308 can occur before phosphorylation of
Ser473 (28). The requirement for Ser473 phosphorylation
prior to that of Thr308 has also been challenged by experi-
ments using an animal knock-out of Sin1, a component of
the mTORC2 complex. Despite loss of Ser473 phosphory-
lation, phosphorylation at Thr308 was maintained both in
knock-out mice and derived Mouse embryonic fibroblasts
(MEFs) (29). Additionally, tissue-specific knock-out of ric-
tor does not result in impaired phosphorylation of all Akt
substrates. For example, phosphorylation of GSK-3β at
Ser9 remains unaffected (25,26).

The activation of Akt’s kinase activity therefore requires
three steps: translocation to the PM and binding
of PI(3,4,5)P3, subsequent phosphorylation of Thr308

by PDK-1 and Ser473 probably by the mTORC2 complex.
However, the order of these phosphorylation events is
not yet clear, and the spatial regulation of the interaction
with PDK-1 remains contentious. Additionally, active Akt
must translocate to different subcellular compartments to
phosphorylate its many substrates (www.jameslab.com.
au/Contentpages/DataResources/KnownAktSubstrates.
shtml). Recent publications have begun to describe sig-
nalling pathways that may play a role in controlling the
activity of Akt and therefore provide for additional mod-
ulation of insulin signalling. The pleckstrin homology-like
domain family B member 1 protein (PHLDB1) translocates
to the PM in response to an insulin stimulus. Depletion of
PHLDB1 via siRNA reduced Akt phosphorylation, glucose
uptake and GLUT4 translocation in 3T3-L1 cells, although
the mechanism by which this occurs remains unclear (30).
What is especially interesting is that PHLDB1 is itself pre-
dicted to be an Akt substrate, implying a tight feedback
loop. Akt has also been reported to undergo protein tyro-
sine kinase 6-dependent phosphorylation in its catalytic
domain, enhancing Akt activation in response to a growth
factor stimulus in an in vitro prostate cancer model (31).

The substrate specificity of Akt also appears to be linked
to its spatial distribution. Akt has been reported to local-
ize to different domains within the cell including the PM,
endosomes and GSVs. The regulation of its distribution
is likely to be regulated by both lipids and scaffolding
proteins. Appl1 targets Akt to endosomes (32) and the
protein scaffold CNK1, in addition to indirectly mediating
the activation of Akt as described above, can also directly
bind to Akt (33). Further examination of Akt-binding part-
ners may shed further light on the features of Akt action
such as how Akt spatial distribution is achieved, whether
protein scaffolds can regulate Akt activity and where Akt
interacts with its substrates.

Signalling Events that Control GLUT4
Trafficking

There are a number of trafficking events in the intracel-
lular itinerary of GLUT4 which may be targeted by insulin
signalling to enhance GLUT4 PM levels. This includes, the
release of GSVs from intracellular retention, GSV translo-
cation to the cell surface (which likely involves transport
of GSVs along cytoskeletal structures), tethering, docking
and fusion of GSVs at the PM and finally endocytosis
or removal of GLUT4 from the cell surface (reviewed in
34) (Figure 1). Recent work has uncovered novel insulin-
mediated signalling events at many of these steps.

Signalling events leading to the release of GLUT4

vesicles from the storage compartment

There is significant debate as to whether GLUT4 is
retained intracellularly in basal conditions by a static or
dynamic retention mechanism (35,36). These models dif-
fer not only in their mechanism for GSV retention, but also
in the manner in which GLUT4 is delivered to the mem-
brane, with static retention favouring a quantal release
mechanism and dynamic retention implying a continuous-
flow release mechanism. Regardless, the release of GSVs
from an intracellular site for fusion with the PM is likely
the most significant site of insulin-stimulated alterations
in GLUT4 trafficking. The most intuitive mechanism by
which GLUT4-containing vesicles could be sequestered
is by tethering to protein scaffolds. TUG and p115 have
been reported to interact with distinct GSV-resident pro-
teins and disruption of their function by over-expression
of a truncated form of these proteins induces a phenotype
indicative of a role in tethering GSVs (37,38). However,
there is currently no published data indicating that these
tether proteins might be a site of signalling in insulin-
induced GLUT4 translocation.

A breakthrough in determining how the insulin signalling
pathway distal to Akt activation may signal to release GSVs
from retention came in 2002, with the discovery of the
Akt substrate of 160 kDa (AS160, also known as TBC1D4).
TBC1D4 was first identified in insulin-stimulated 3T3-L1
adipocytes using an antibody specific for the Akt phospho-
rylation motif (RxxRxS/T) (39). This finding was particularly
exciting as TBC1D4 is a Rab GTPase activating protein
(Rab-GAP) and therefore offered a connection between
insulin signalling through Akt and membrane trafficking
events leading to GLUT4 translocation. There is now a
plethora of experimental data from investigations utilizing
various tools and techniques to identify the exact role of
TBC1D4 in insulin-regulated GLUT4 trafficking (reviewed
in 3). These approaches have included siRNA to knock-
down TBC1D4 expression levels, a dominant mutant in
which four insulin-sensitive phosphorylation sites (S318A,
S588A, T642A and T751A) were mutated to alanine
(TBC1D4-4P), site-specific antibodies to interrogate phos-
phorylation at distinct sites within TBC1D4 and the use
of 14-3-3-binding mutants to investigate the role of 14-
3-3 binding in the regulation of TBC1D4 activity. These
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Figure 1: Overview of molecules that are involved in insulin-regulated GLUT4 trafficking as described in this review. The binding
of insulin to its receptor triggers an intracellular signalling cascade that culminates in the recruitment of Akt to the PM where it is
activated by phosphorylation. Through numerous downstream substrates, insulin signalling intersects the GLUT4 trafficking pathway at
multiple steps including: the release of GSVs from retention (step 1), trafficking of GSVs to the PM via the cytoskeleton (step 2), GSV
tethering (step 3), docking and fusion with the PM (step 4) and GLUT4 internalization from the cell surface (step 5).

data have led to the hypothesis that TBC1D4 retains
GLUT4 within the cell by inactivating its cognate Rab
protein. Phosphorylation of TBC1D4 by Akt in response
to an insulin stimulus recruits 14-3-3, which binds to
TBC1D4. These signalling events inhibit TBC1D4 GAP
activity, allowing GTP loading and activation of the Rab
protein. This would increase the concentration of GTP-
Rab on GSVs, ultimately resulting in their translocation to,
and fusion with, the PM.

Interestingly, the hypothesis described above represents
only an incremental advance when compared to the
initial hypothesis put forward following the discovery
of TBC1D4. Indeed, despite the large amount of
data now published on TBC1D4 interacting partners,
phosphorylation status and 14-3-3 binding, a number of
questions remain unanswered: What is the mechanism for
inactivation of TBC1D4 GAP activity? Which Rab or Rabs
does TBC1D4 inactivate? Does TBC1D4 translocate from
GSVs to the cytosol upon insulin stimulation? What is the
precise role of 14-3-3 binding? Where in the cell is TBC1D4
phosphorylated? Which step or steps in GLUT4 trafficking
does TBC1D4 regulate? Is TBC1D4 the predominant
mediator of insulin’s effect on GLUT4 trafficking?

We propose that the techniques currently in use may
not provide the entire story regarding the role and impor-
tance of TBD1D4 in GLUT4 translocation. For example,
siRNA knock-down of TBC1D4 results in an expected yet
moderate phenotype. Adipocytes with reduced expres-
sion of TBC1D4 have increased GLUT4 levels at the
PM in the basal state, consistent with TBC1D4 having
a negative role in controlling GLUT4 exocytosis (40). How-
ever, knock-down of TBC1D4 does not phenocopy insulin;
approximately two-thirds less GLUT4 is redistributed to

the PM than following insulin stimulation. This suggests
that there is a minimum amount of TBC1D4 that is suf-
ficient to retain GLUT4 intracellularly. It is possible that
there is a degree of ‘spareness’ in the signalling network
at the level of TBC1D4. This hypothesis is supported
by recent data from our laboratory indicating that only
a small proportion of total cellular TBC1D4 needs to be
phosphorylated in order for insulin to induce maximal
GLUT4 translocation (41). An alternative explanation is that
other TBC1D4-independent processes act either to retain
GLUT4 intracellularly or promote GSV fusion with the PM.

Finally, it is possible that TBC1D4 itself has a sec-
ondary function at the cell periphery. This hypothesis
is supported by two lines of evidence. First, TBC1D4
knock-down results in reduced insulin-stimulated GLUT4
exocytosis. This argues for an additional, positive func-
tion for TBC1D4 distal to GSV sequestration (40). Second,
the use of TBC1D4 phosphorylation mutants in combina-
tion with microscopic techniques, such as total internal
reflection fluorescence (TIRF), has revealed a role for
TBC1D4 in GSV docking and fusion (42,43). However,
other studies have reported that the primary defect in
cells expressing these mutants is at the level of GSV
release from sequestration (44). This confusion may stem
from differences in the expression level and thus effi-
cacy of the mutant protein. For example, in studies with
high over-expression of TBC1D4 phosphorylation mutants,
GLUT4 release from sequestration may be completely
inhibited. In this case the strong inhibition at one step
(GSV release) prevents the measurement of an effect of
this mutant downstream (at the PM). Therefore, the data
from experiments carried out under these conditions does
not preclude the possibility that TBC1D4 also acts at other
sites in the cell to regulate GLUT4 trafficking. Performing
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the same experiment in cells over-expressing the TBC1D4
mutant to a lesser degree might enable examination of
the role of TBC1D4 at the PM.

It is of interest that despite nearly a decade passing since
the discovery of TBC1D4, a knock-out mouse model has
yet to be described. Recently, a knock-in mouse model in
which the Thr642 phosphorylation and 14-3-3-binding site
has been mutated to alanine has been reported (45). As
expected, these mice are glucose intolerant and insulin
insensitive. However, although these mice display defec-
tive glucose uptake into muscle, there was no defect
in insulin-stimulated glucose uptake into adipose tissue.
Therefore, although the whole-body phenotype of the
TBC1D4 knock-in is entirely consistent with the current
hypothesis for TBC1D4 action and importance, the tissue-
specific molecular details of the phenotype are not clear.

A criticism of these genetic approaches (knock-in, over-
expression) is that their chronic nature allows for com-
pensatory mechanisms or non-specific interactions, in the
case of over-expression, to occur. Just as the specific Akt
inhibitors have greatly aided our understanding of isoform
specificity for this kinase, a similar rapid method for target-
ing TBC1D4, either pharmacologically or through the rapid
and reversible inducible expression of mutant proteins,
would be of great benefit to the field.

TBC1D1, the closest homologue of TBC1D4, has an
identical domain organization to TBC1D4. This Rab-GAP
has also been implicated in regulating GLUT4 translo-
cation (46). A mutation of TBC1D1 (R125W) has been
linked to increased risk of familial obesity (47,48). Over-
expression of TBC1D1, containing the R125W mutation, in
muscle inhibited insulin-stimulated glucose transport (49).
Additionally, insulin stimulation leads to increased phos-
phorylation of TBC1D1 at a site, which is predicted to
be phosphorylated by Akt (Thr596). Intriguingly, TBC1D1
and TBC1D4 have mutually exclusive tissue-expression
profiles, raising the possibility that these Rab-GAPs may
be functionally redundant. Congruent with this hypoth-
esis, Drosophila melanogaster has only one TBC1D1/4
homologue, pollux which presumably fulfils the nutri-
ent requirements of muscle in the fly in response to
either feeding or exercise. In mammals, evidence is now
building that TBC1D4 and TBC1D1 may play comple-
mentary rather than redundant roles. TBC1D1 has been
linked with 5′ AMP-activated protein kinase (AMPK) and
exercise/contraction-stimulated glucose transport, rather
than insulin-stimulated glucose transport (50,51). Indeed,
these proteins may act distinctly to regulate insulin
(TBC1D4) or exercise/contraction (TBC1D1) stimulated
glucose transport; perhaps offering an explanation for the
additivity in stimulation of glucose transport and GLUT4
translocation observed between these signalling path-
ways (52,53). Another intriguing possibility is that TBC1D4
and TBC1D1 act as a site of cross-talk between the insulin
and exercise/contraction signalling pathways. It has been
reported that Akt can phosphorylate TBC1D1, and AMPK

can phosphorylate TBC1D4 (54–56). As some tissues (e.g.
plantaris and Extensor digitorum longus (EDL) muscles)
express a significant amount of both isoforms (51), it
would be advantageous for TBC1D1 and TBC1D4 to work
synergistically in such a setting.

Complementarity between TBC1D4 and TBC1D1 can also
be rationalized when considering the types of tissue
with high TBC1D4 or TBC1D1 expression. For example,
adipocytes, whose primary role is to dispose glucose in
response to insulin, predominantly express TBC1D4. In
contrast, glycolytic (white) muscle tissue, preferentially
express TBC1D1; perhaps to respond primarily to high
demand for glucose during exercise. It is clear that signifi-
cant questions remain over the exact relationship between
these two proteins. This problem is exacerbated by incon-
sistencies in both the organism and muscle types used
for investigations into the role of TBC1D1 and TBC1D4 in
insulin- and exercise-stimulated glucose uptake. It might
be predicted that the phenotype of TBC1D1/4 disruption
would depend on the fibre composition of the muscle
studied.

Several Rabs have been proposed as the target of
TBC1D4, although the identity of its target Rab(s) is contro-
versial and remains an area of active research. Several Rab
proteins have been identified as co-immunoprecipitating
with GSVs in both 3T3-L1 adipocyte (57,58) and cardiac
muscle cells (59). One of these, Rab10, has emerged
as an attractive candidate for the target of TBC1D4 in
3T3-L1 cells; knock-down of Rab10 resulted in a reduc-
tion in insulin-stimulated GSV translocation to the PM and
simultaneous knock-down of both Rab10 and TBC1D4
partially rescued the constitutive transport of GSVs to
the PM caused by depletion of TBC1D4 (60). Conversely,
in L6 muscle cells Rab8A, Rab13 (61) and Rab14 have
been proposed as the major target Rabs of TBC1D4.
Over-expression of Rab8A, Rab13 and Rab14, but not
Rab10, reversed the constitutive block in GSV transloca-
tion caused by simultaneous over-expression of TBC1D4-
4P in L6 cells (61,62). This suggests that there may be
Rab degeneracy or cell-specific roles for these proteins in
GLUT4 trafficking.

The apparent involvement of several different Rab proteins
in GLUT4 trafficking may also reflect the complicated life
cycle of a GSV. GLUT4 is recycled through several com-
partments before being packaged into specialized storage
vesicles. Therefore, analysis of GLUT4-containing mem-
branes that have been isolated by immunoprecipitation
protocols will likely identify a multitude of Rab proteins
that reflect this complicated trafficking route; it is reason-
able to assume that these distinct GLUT4 trafficking steps
are each controlled by a different Rab protein. In addition,
identifying the Rabs that regulate discrete steps in GLUT4
trafficking is complicated as it requires assays to accu-
rately measure specific and localized changes in GLUT4
trafficking. Intervening at any point in GLUT4 trafficking
through disruption of Rab function may yield a phenotype
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that can be misinterpreted if an end-point measurement
such as the presence of GLUT4 at the cell surface is used.

Signalling to the cytoskeleton in GLUT4 vesicle

trafficking

GLUT4 vesicles have been reported to associate with
both the microtubule and actin cytoskeleton (63). Insulin
signalling to the microtubule network appears to be medi-
ated via motor proteins. For example, KIF3/kinesin II has
been implicated in GLUT4 exocytosis. The association
of KIF3/kinesin II with microtubules is enhanced via a
PKCλ-dependent mechanism following insulin stimula-
tion, although the details of this signalling mechanism
remain unresolved (64).

A role for actin in mediating insulin-stimulated GLUT4
translocation has also been described. Insulin stimula-
tion induces rapid remodelling of actin filaments into a
cortical mesh in muscle cells and adipocytes (65). If this
mesh formation is inhibited by administration of excess
PI(3,4,5)P3 (66) or by the G-actin polymerization inhibitor
latrunculin-B (65), insulin-induced GLUT4 translocation is
inhibited. Interestingly, studies using TIRF have noted
that disruption of cortical actin by latrunculin-B resulted in
a normal redistribution of GLUT4 to the evanescent field
(close to the PM), but inhibited GSV fusion with the PM.
Several models have been proposed to explain actin’s
role in GLUT4 trafficking. Remodelled actin could facilitate
GLUT4 translocation by localizing signalling intermediates,
by promoting GLUT4 sorting, by guiding myosin motors
on the GSVs or by positioning GLUT4 near the PM and
aiding GSV docking with the PM. For this final model, an
adaptor protein would likely be required to tether GLUT4-
containing vesicles to cortical actin filaments. α-Actinin4
may provide this link (67).

Rho GTPases, such as Rac (43,68,69), which are known
to mediate actin re-organization, have been reported to
be activated by insulin signalling. However, the details of
this activation are yet to be established. A more direct
link between insulin signalling and the cytoskeletal may
involve Myo1c, a motor protein that mediates movement
along actin filaments. This protein was recently reported to
be phosphorylated by Ca2+/calmodulin-dependent protein
kinase II following insulin stimulation (70). Disruption of
Myo1c function via siRNA or expression of an ATPase null
mutant inhibits insulin-stimulated glucose transport in 3T3-
L1 adipocytes and skeletal muscle, respectively (71,72).
As Myo1c resides at the PM, it is likely function with
actin at this location. The role of Myo1c is unclear, but it
may act to regulate the formation of a protein complex or
participate in the movement of GSVs along actin filaments
towards the PM.

Signalling events at the PM; association and fusion

of GSVs with the PM

Akt substrates have also been identified in the final steps
of GLUT4 translocation; tethering of GLUT4-containing

transport vesicles with the PM and membrane fusion. The
exocyst complex, an evolutionarily conserved octameric
protein complex, has been proposed to tether GLUT4 vesi-
cles to the PM prior to fusion (73). Signalling to the exocyst
complex is thought to occur through the small GTPase
RalA, which is present on GSVs (74). Akt has been impli-
cated in the control of RalA activity via phosphorylation of
a dimeric Ral GAP protein complex (75).

The GSV fusion event is mediated by the action
of the SNARE proteins Syntaxin 4, SNAP-23 and
VAMP2/Synaptobrevin in concert with regulatory mole-
cules such as Munc18c (76). The interaction between
VAMP2 and Syntaxin 4 is regulated by a number of fac-
tors, one of which is the protein Synip, an Akt substrate.
Phosphorylation of Synip in response to an insulin stimulus
dissociates it from Syntaxin 4 and allows VAMP2 binding
and GSV fusion with the PM (77). However, the involve-
ment of Synip and its phosphorylation in regulating GLUT4
trafficking remains controversial (78). Insulin-stimulated
phosphorylation of Munc18c and VAMP2 has also been
reported. Munc18c is a regulator of SNARE complex
formation and has been reported to undergo insulin-
dependent tyrosine phosphorylation, switching its binding
specificity from Syntaxin 4 to Doc2β (79), a calcium-
sensitive positive regulator of exocytosis, which has been
reported to be essential for triggering GSV fusion (80).

These recent discoveries of protein phosphorylation and
interactions at the PM, downstream of insulin signalling
are yet to be incorporated into a comprehensive model that
definitively describes the complicated molecular details
of GSV docking and fusion at the PM and how insulin
signalling regulates these processes.

Signalling and GLUT4 endocytosis

GLUT4 is endocytosed via the canonical clathrin-
dependent pathway (81). More recently, it has been
reported that GLUT4 is endocytosed via multiple path-
ways in 3T3-L1 and L6 cells (82,83). GLUT4 possesses
several trafficking motifs including an FQQI motif in its
cytosolic N-terminus and a dileucine motif in its C-terminus
that appear to function in endocytosis of the transporter.
It has also been reported that endocytosis plays a role
in the regulated accumulation of GLUT4 at the PM in
response to insulin in both 3T3-L1 adipocytes and L6
myotubes (53,82,84). This effect is blocked by wortman-
nin, a PI-3-kinase inhibitor, but not by a specific Akt
inhibitor; implying that inhibition of GLUT4 endocytosis
in insulin-stimulated cells is an Akt-independent pro-
cess (53,85). The Cdc42-interacting protein-4 was recently
described, perhaps counterintuitively, to enhance GLUT4
internalization in insulin-stimulated L6 myoblasts (86).
Rab5 has also been implicated in regulated GLUT4 endo-
cytosis; Rab5 activity is inhibited following insulin stimula-
tion (87). This could explain reduced GLUT4 endocytosis
in insulin-stimulated cells as Rab5 is known to be involved
in directing vesicle transport and endosomal fusion in the
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early endocytic pathway. Further effort is required to pin-
point the role of Rab5 and other intermediates in insulin
regulation of GLUT4 endocytosis. As the primary site of
action for proteins regulating endocytosis is likely to be
the PM, a targeted approach measuring signalling events
[protein–protein interactions, post-translational modifica-
tions (PTMs)] specifically at this location may reveal the
mechanism by which GLUT4 internalization is controlled.

Once internalized from the PM, GLUT4 is sorted back
into its storage compartment via the endosomal system.
This step may also be regulated by insulin action. The
lipid kinase PIKfyve (PhosphoInositide K inase for five
position containing an FYVE finger), a protein is thought
to regulate endosomal trafficking, has been identified as
an Akt substrate. Ablation of the Akt phosphorylation
site by mutation to alanine in the PI(3)P 5-kinase PIKfyve
enhances insulin-stimulated translocation of GLUT4 to the
PM (88). However, the exact site of PIKfyve action and its
role in GLUT4-regulated traffic remains unresolved.

Future Prospects: Proteomics and Functional
Analysis of Integrated Signalling Networks

To date, the majority of our knowledge of the insulin
signalling cascade is derived from reductionist investiga-
tions focussing on individual proteins or processes. As
described in this article, this has led to the identification of
the canonical PI3K/Akt pathway, Akt substrates and some
functional links. However, our view of this pathway is still
somewhat rudimentary. We view it as a linear analogue
pathway, which tends to overlook important topological
features.

We propose that there are three issues that, if addressed,
will enable a more comprehensive understanding of the
complex network of signalling elements that lead to
GLUT4 trafficking following insulin stimulation. First, the
multitude of insulin signalling features such as PTMs
and protein–protein interaction need to be identified.
Second, a specific function needs to be assigned to these
events. Finally, these data should be modelled using in
silico dynamical approaches so that the insulin signalling
network leading to GLUT4 translocation can be viewed
as a whole and novel features of the pathway, such as
feedback loops, revealed.

Mass spectrometry-based protein identification has led to
several important advances in the field, none more so
than the identification of TBC1D4 as an Akt substrate (39).
However, over the past few years, there have been
considerable advances in mass spectrometry methodolo-
gies and technologies. These include both improvements
in instrumentation to enhance mass accuracy and mass
spectra acquisition speed and algorithms for peptide iden-
tification and PTM assignment. This has been coincident
with the rise of techniques that permit accurate relative

and absolute quantification of protein by mass spectrom-
etry [e.g. stable isotope labelling in cell culture (SILAC)
and iTRAQ]. These improvements have resulted in a shift
in the focus of mass spectrometry-based experiments
from protein identification to more functional analysis.
This change in application is made all the more exciting by
the fact that proteomic laboratories can now routinely and
reliably identify and quantify thousands of proteins and
PTMs per experiment.

The small number of studies that have taken advantage
of these proteomic techniques to study features of the
insulin signalling pathway to date highlight the success
that the combination of high-resolution mass spectrome-
try with differential mass labelling (e.g. SILAC or iTRAQ)
can have when applied to this signalling network. Using
various chromatographic enrichment strategies, these
studies focussed on identifying and quantifying specific
insulin-responsive PTMs. In each case, the authors suc-
cessfully identified novel insulin-sensitive tyrosine phos-
phorylated proteins and Akt substrates which, in some
cases, represent cellular processes that were previously
not known to be regulated by insulin (89–92).

It is clear that in-depth proteomic analysis of insulin sig-
nalling will yield additional components of this signalling
network and further our understanding of insulin action.
This will not only lead to the discovery and cataloguing of
PTMs across the proteome, but will also allow these PTMs
to be studied in a more functional manner. This is exem-
plified by investigations using a phosphotyrosine-targeted
approach. Here, the authors provided detailed kinetic infor-
mation on the tyrosine phosphorylation of substrates in
response to insulin, and identified interacting partners
associated with specific phosphorylation events on the
insulin receptor and IRS proteins (90,91). As tyrosine phos-
phorylation only represents a very small proportion of total
cellular phosphorylation, these phosphoproteomic and
interactomic analyses will need to be extended to include
serine/threonine phosphorylation. These approaches can
also be used to interrogate signalling processes at specific
locations within the cell; a focus on the PM may reveal the
mechanism by which insulin signalling controls the fea-
tures of GLUT4 trafficking that occur at the cell periphery.

The multitude of signalling events within the insulin sig-
nalling pathway that will be identified by such a proteomic
approach must be further investigated in order to deter-
mine their specific role in regulated GLUT4 translocation.
This is not a trivial task when considering a complex
process such as GLUT4 trafficking. Ideally, assays that
can distinguish between different trafficking steps such
as GLUT4 trafficking to the PM, docking with the PM,
GSV fusion and GLUT4 endocytosis will be used to
accurately assign roles to signalling interventions. Simply
measuring the effect of distinct signalling intermediates
on an end-point measurement, such as GLUT4 appear-
ance at the PM or glucose uptake, will not identify the
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specific process or processes that these signalling inter-
mediates regulate. Importantly, using techniques already
adopted in trafficking studies (antibody uptake assays
and internalization assays), TIRF and confocal microscopic
techniques and an in vitro fusion assay (93), researchers
have described assays that are able to monitor distinct
steps of GLUT4 trafficking (35,43,44,94). The interaction
of GSVs with the PM is a particularly complex yet impor-
tant event in GLUT4 trafficking. Advances in analysis of
GSV trafficking features, the formation of signalling com-
plexes and protein–protein interactions by high-resolution
TIRF microscopy at this location will enable a deeper
understanding of signalling events at the PM.

As hinted at above, the true power of high-resolution
proteomics and interactomics, in combination with func-
tional assignment, lies in their analysis by sophisticated
systems biology modelling. In particular, the advantage
to a systems biology approach in the context of complex
integrated signalling networks is that multiple parame-
ters can be considered when modelling. This is vital as
the insulin signalling pathway comprises elements that
are regulated by a number of different mechanisms. This
includes integrating temporal data on transient PTMs and
protein–protein interactions, with details of allosteric reg-
ulation and information on spatial regulation of signalling
complexes.

Some specific aspects of insulin signalling leading to
GLUT4 translocation have been mathematically mod-
elled (95,96). However, the recent advances in quantita-
tive proteomics described above offer the opportunity to
revisit these modelling concepts with hugely enhanced
data sets. In addition, this modelling can be readily
accessed by researchers without a specialized mathemat-
ical background as several computational tools have been
generated to facilitate the generation signalling networks
from data sets (reviewed in 97). In this way it will be pos-
sible for researchers to view the insulin signalling network
to GLUT4 translocation and (other cellular processes) as
an integrated map.

Network modelling may reveal features of the insulin
signalling network that could not have been envisaged
using traditional cell biology approaches. For example,
the GLUT4 trafficking itinerary depends on several dis-
tinct regulated processes. When considering the individual
processes in isolation, it is likely that several binary inter-
actions combine to generate a single biological event.
As well as defining the temporal and spatial require-
ments for these individual processes, the mapping strat-
egy described above will also reveal interplay between
molecules involved in regulating multiple processes. It
is likely that early signalling events in insulin-stimulated
GLUT4 trafficking will feed forward onto subsequent pro-
cesses; similarly distal processes may play a counter
regulatory role. Analysing the insulin signalling network in
this way will enable us to identify the key nodes in insulin

signalling to GLUT4 trafficking that are dysregulated in
insulin resistant cells.
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