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White PJ, Charbonneau A, Cooney GJ, Marette A. Nitrosative modifications
of protein and lipid signaling molecules by reactive nitrogen species. Am J Physiol
Endocrinol Metab 299: E868-E878, 2010. First published September 28, 2010;
doi:10.1152/ajpendo.00510.2010.—This review is the last of four review articles
addressing covalent modifications of proteins and lipids. Two of the reviews in this
series were previously published (15, 28) and dealt with modifications of signaling
proteins by GlcNAcylation and serine phosphorylation. In the current issue of the
Journal, we complete this series with two reviews, one by Riahi et al. (102a) on the
signaling and cellular functions of 4-hydroxyalkenals, key products of lipid per-
oxidation processes, and our present review on the effects of nitrosative modifica-
tions of protein and lipid signaling molecules by reactive nitrogen species. The aim
of this Perspectives review is to highlight the significant role that reactive nitrogen
species may play in the regulation of cellular metabolism through this important
class of posttranslational modification. The potential role of nitrosative modifica-
tions in the regulation of insulin signal transduction, mitochondrial energy metab-
olism, mRNA transcription, stress signaling, and endoplasmic reticulum function
will each be discussed. Since nitrosative modifications are not restricted to proteins,
the current understanding of a recently described genus of “nitro-fatty acids” will
also be addressed.
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FOLLOWING THE NOBEL PRIZE-WINNING DISCOVERY that endog-
enously produced nitric oxide (*NO) possesses important bio-
activity in vivo, targeted nitrosative modifications of proteins
and lipids have emerged as a key signaling mechanism in cell
physiology. With a clear role in pathophysiology, elevated
formation of nitrosative adducts has been implicated in the
etiology of multiple disease states, including insulin resistance
(33, 135), atherosclerosis (95), and Alzheimer’s disease (126).
The aim of this Perspectives review is to highlight the signif-
icant role that reactive nitrogen species (RNS) may play in the
regulation of cellular metabolism through this important class
of posttranslational modification. The potential role of nitrosa-
tive modifications in the regulation of insulin signal transduc-
tion, mitochondrial energy metabolism, mRNA transcription,
stress signaling, and endoplasmic reticulum function will each
be discussed. Since nitrosative modifications are not restricted
to proteins, the current understanding of a recently described
genus of “nitro-fatty acids” will also be addressed.
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Biochemistry of Nitrosative Modifications

Nitrosative modifications are selective processes that target
precise molecular sites in proteins or lipids for gain or loss of
function in a manner somewhat analogous to the better-known
phosphorylation or acetylation signal transduction mechanisms
(49, 52, 115). In proteins, with the exception of heme iron
binding, these modifications manifest in two main forms, either
as S-nitros(yl)ation! of cysteine thiols or as nitration of tyrosine
residues. S-nitrosylation occurs through the covalent attach-
ment of a diatomic nitroso group to a reactive thiol sulthydryl
in a redox-dependent fashion (49). Tyrosine nitration on the
other hand, results from the covalent addition of a triatomic
nitro group (NOy) to the phenolic ring of tyrosine residues
(52). Both S-nitrosylation and tyrosine nitration may arise from
protein interactions with ®NO or secondary intermediates of
®*NO, otherwise termed reactive nitrogen species (RNS).
Higher nitrogen oxides such as N>Os, formed through previous
reaction of ®NO with O,, are thought to be a major S-
nitrosylating species (50, 132). Protein S-nitrosylation may
also occur as a result of transnitrosylation, which involves

! The covalent attachment of the NO group to sulfhydryl residues in proteins
is defined as S-nitrosylation. General NO attachment to nucleophilic centers is
referred to as nitrosation (110a).
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NO™ transfer from abundant low-weight S-nitrosothiols such
as S-nitrosoglutathione (GSNO) (50). On the other hand, per-
oxynitrite (ONOQO™), produced from the reaction of *°NO with
superoxide anion (O, ), is regarded as one of the major cellular
nitrating agents (50, 53). Other notable nitrating agents include
myeloperoxidase (MPO)-derived nitrosonium cation (*NO,),
produced from the reaction of nitrite (NO, ) with hydrogen
peroxide (H,O,) (34, 107), and nitroso-peroxocarbonate (ONO-
OCO, ) which is formed via the reaction of carbon dioxide
(CO2) with ONOO™ (32, 66). Interestingly, lipid peroxyl
radicals (LOO®) have also been recently shown to promote
tyrosine nitration by inducing tyrosine oxidation and also by
reacting with NO5 to produce *NO; (9).

Despite being nonenzymatic in nature, both protein S-ni-
trosylation and tyrosine nitration appear to be remarkably
selective processes. Indeed, only a relatively small number of
tyrosine and cysteine residues appear to be the target of
nitrosative adducts (3, 115). It has been established that the
local environment of the residue plays a major role in whether
it will react with RNS. In the case of tyrosine nitration, Souza
et al. (114) revealed that proximity to turn-inducing amino
acids, such as proline or glycine, and a nearby negative charge
contribute to this selectivity. In contrast, the presence of an
acid-base consensus motif has been shown to confer reactivity
for S-nitrosylation to cysteine thiols (116). Interestingly, hy-
drophobic pockets in proteins are thought to promote S-nitrosy-
lation of internal cysteines independently of the identified
consensus motif by concentrating local °®NO and O,, which are
hydrophobic in nature (88).

Endogenous °NO is produced enzymatically by a family of
®NO synthase (NOS) isozymes, which convert O, and L-arginine
to ®°NO and r-citrulline (42, 86). The NOS family comprises two
constitutively expressed isoforms, endothelial NOS (eNOS) and
neuronal NOS (nNOS), as well as one transcriptionally regulated
isoform, inducible NOS (iNOS), which plays an important role in
host defense (42). The enzymatic source of *NO synthesis is a key
determinant of the cellular nitrosative milieu. Indeed, the NOS
activity of the constitutively expressed isoforms is transient in
nature and depends on activation by intracellular cues such as
calcium or phosphorylation through protein-protein interactions
with heat shock protein (HSP)90 and Akt (63, 79, 121). In
contrast, iNOS activity is regulated at the biosynthetic level, and
induction of this enzyme leads to higher ®*NO output that is
sustainable even for days (48, 87). These differences imply dis-
crete nitrosative signaling by constitutive NOS-derived *NO vs.
widespread accumulation of nitrosative modifications resulting
from iNOS induction.

In addition to the quantity of *NO produced, the spatial
localization of NOS enzymes is also an important determinant
of nitrosative outcomes. On this note, the constitutive, nNOS,
and eNOS isozymes have been shown to display differential
colocalization with intracellular calcium sources that is be-
lieved to underlie part of the disparity in their biological
functions (8). Furthermore, NOS enzymes are also known to
complex with their intracellular nitrosative targets either di-
rectly or via adaptor proteins (37, 62, 77, 104). One well-
recognized example of this being the regulation of cyclooxy-
genase-2 activity in inflammatory settings by iNOS (62).

Nitrosative protein adducts are not only governed by the
enzymes involved in *®NO generation, they also appear to be
subject to negative regulation by cellular denitrosylating and

Review
E869

denitrating enzymes (1, 13). S-nitrosoglutathione reductase
(GSNOR) has been identified as a physiologically relevant
“denitrosylase”, which acts by reducing the low-weight nitro-
sothiol GSNO (73, 74). Other candidates with potential deni-
trosylase activity include thioredoxin (89), protein disulfide
isomerase (111), and xanthine oxidase (124). Compared with
the abundance of potential denitrosylases, there is very little
information available concerning candidate denitrating en-
zymes. However, exposure of tyrosine-nitrated proteins to
various components of whole blood (46, 68, 106, 112) as well
as different tissue lysates and crude extracts (46, 57, 65) has
been shown to reduce nitrotyrosine abundance independently
of any proteolytic activity. This evidence strongly supports the
existence of tyrosine nitratase activity in vivo. As a whole, the
identification of counterregulatory enzymatic processes is a
relatively important advance in nitrosative cell biology that
certainly warrants further investigation. Future findings in this
field will likely be reminiscent of those that revealed the vital
functions of protein phosphatases. Importantly, the regulation
of these enzymes could confer an essential degree of specificity
to nitrosative signaling that is yet to be fully understood.

Nitrosative Modifications in Insulin Signaling

Our group was the first to demonstrate the link between
nitrosative stress and the etiology of obesity-linked insulin
resistance. We observed that iNOS expression is induced in
dietary (high-fat feeding) and genetic (ob/ob mice, Zucker
diabetic rat) models of obesity (99). We then provided genetic
evidence for the deleterious role of iNOS in obesity by show-
ing that high-fat (HF)-fed obese mice lacking iNOS (iNOS
KO) are protected from the development of skeletal muscle
insulin resistance, as revealed by the normalization of insulin-
dependent tyrosine phosphorylation of the insulin receptor,
IRS-1, and Akt/PKB (99). Further studies by three independent
groups confirmed that iNOS is a mediator of insulin resistance.
Indeed, Kearney’s group confirmed that iNOS disruption pro-
tects against insulin resistance for glucose metabolism in HF-
fed mice (91). iNOS disruption was also found to partially
prevent muscle insulin resistance in genetically obese ob/ob
mice (117), whereas downregulation of iNOS by selective
inhibitors or antisense oligonucleotides improved hepatic and
muscle insulin action, respectively, in these animals (21, 40).
Importantly, iNOS is also induced in skeletal muscle and
adipose tissues of type 2 diabetic subjecs (36, 123), where
its expression correlates with the occurrence of insulin
resistance and obesity (36). Furthermore, the iNOS gene has
been shown to be genetically modulated by a 4-bp insertion/
deletion (*) polymorphism in patients with coronary artery
disease, and those patients homozygous for the + allele
showed higher glycemia and elevated waist/hip ratio as well
as a greater risk for unstable angina (82). The + allele of the
iNOS promoter variant was later found to confer higher
iNOS expression and may also be implicated in the risk for
developing diabetic complications (e.g., microalbumineria,
nephropaty, neuropathy, retinopathy) in carriers of this
variant (83). Taken together, these studies indicate that
iNOS may also play a key role in the pathogenesis of human
insulin resistance, diabetes, and associated debilitating com-
plications.
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In light of the importance that tyrosine phosphorylation
holds for insulin signal transduction, it is logical to assume
that interfering tyrosine nitration underlies iNOS-induced
insulin resistance. However, studies providing important
information on the role of this posttranslational protein
modification in obesity and lipid- and inflammation-induced
insulin resistance are still scarce. In support of the interfer-
ence theory, in vitro work has shown that exposure to
ONOO™ can induce tyrosine nitration of IRS-1, conse-
quently impeding tyrosine phosphorylation and activation of
downstream insulin-signaling intermediates (90). Recent
in vivo data also suggest that tyrosine nitration of insulin
receptor (IR), IRS, and Akt in skeletal muscle and liver of
HF-fed and lipid-infused animals could be responsible for
impaired insulin signal transduction (23, 33, 139). Genetic
evidence for a key role of tyrosine nitration in the control of
insulin signal transduction was provided by the observation
that lipid infusion induced tyrosine nitration of the IR,
IRS-1, IRS-2, and Akt in wild-type mice but not in iNOS
KO animals(23). Furthermore, in vitro tyrosine nitration of
hepatic Akt by ONOO™ blunted insulin-induced Akt ty-
rosine phosphorylation and kinase activity. Using the
ONOO~ decomposition catalyst FeTPPS [5,10,15,20-tet-
rakis (4-sulfonatophenyl) prophyrinato iron (III)] was also
found to effectively prevent tyrosine nitration of IR and
IRS-1 in skeletal muscle of HF-fed animals and alleviated
the concomitant defects in insulin-dependent tyrosine phos-
phorylation (139). Together, these data provide support for
tyrosine nitration as a molecular mechanism by which iNOS
induction reduces insulin action in obesity and after lipid
overload (Fig. 1).

S-nitrosylation of key insulin-signaling intermediaries has
also been hypothesized as a potential mechanism of insulin
resistance in altered metabolic states (Fig. 1). In skeletal

Fig. 1. Nitrosative modifications in insulin
signaling. The figure shows identified targets
of tyrosine nitration (NO»-Y, on the /left) and
S-nitrosylation (S-NO, on the right) in the
insulin-signaling cascade. Left: inducible NO
synthase (iNOS) expression leads to *NO
production, which, upon interaction with mi-
tochondrial or NADPH oxidase (NOX)-de-
rived superoxide (O5), forms peroxynitrite
(ONOO™). Peroxynitrite may then react to

NITROSATIVE MODIFICATIONS BY RNS

muscle, S-nitrosylation of IRS-1 and Akt/PKB has been
associated with impaired insulin signal transduction in mul-
tiple models of insulin resistance (19-21, 135). Interest-
ingly, it appears that S-nitrosylation is key for proteasomal
downregulation of IRS-1 in cultured skeletal muscle cells
(117) as well as in liver (4). Carvalho-Filho and colleagues
(19-21) also demonstrated that S-nitrosylation of insulin
signaling intermediates was tightly linked to iNOS induc-
tion and that reducing iNOS expression by gene disruption
and antisense oligonucleotide treatment preserved insulin
action in all models of obesity. Importantly, Yasukawa et al.
(135) showed that Akt/PKB is negatively regulated by
S-nitrosylation. Using site-directed mutagenesis to replace
the cysteine at position 224 in Akt/PKB with a serine, they
were able to show that this site was vital to the inhibitory
effect of S-nitrosylation, since mutated forms of Akt/PKB
were resistant to *NO donor-induced S-nitrosylation and
inactivation. These studies suggest an important regulatory
role for this posttranslational protein modification in insulin
signal transduction and insulin resistance.

The use of mass spectrometry and site-directed mutagen-
esis will be vital to the future identification of tyrosine and
cysteine residues in insulin-signaling proteins that are tar-
geted by nitration and S-nitrosylation and thus responsible
for impaired insulin signal transduction in dietary and ge-
netic models of insulin resistance. It will be interesting to
see whether the contribution of these nitrosative modifica-
tions to insulin resistance varies among insulin target tis-
sues. In future studies, it will also be important to define the
precise radical species that are responsible for these nitro-
sative adducts in vivo and whether altered denitrosylation/
denitration events contribute to the pathogenesis of insulin
resistance.

form hydroxy.l radicals (OH®), carbonate
radicals (CO;—), and nitrogen dioxide
(NO>°®). OH® may also interact with unsatur-
ated fatty acids in membranes to form lipid
peroxyl radicals (LOO®). These reactive in-
termediates may then work in concert to
promote tyrosine nitration of the insulin re-
ceptor, insulin receptor substrate (IRS), and
Akt. Each of these modifications is believed
to impede insulin signal transduction, lead-
ing to insulin resistance. Right: iNOS induc-
tion leads to ®NO production, which results
in S-nitrosylation of IRS and Akt. S-nitrosy-
lation of IRS promotes its degradation in the
proteasome. S-nitrosylation of these key in-
sulin-signaling intermediates is also believed
to promote insulin resistance.
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Fig. 2. Identified targets of nitrosative modifications in energy metabolism. The figure shows key enzymes involved in glycolysis, 3-oxidation, the TCA cycle,
and electron transport chain (ETC) that have been identified as targets of tyrosine nitration (NO2-Y) or S-nitrosylation (S-NO).

Nitrosative Signaling and Mitochondrial Energy Metabolism

Careful investigation of the S-nitrosylation and tyrosine
nitration proteomes has revealed that many enzymes in-
volved in cellular energy metabolism, including glycolysis
and fatty acid oxidation, are susceptible to nitrosative mod-
ifications on both cysteine and tyrosine residues, with some
proteins in these pathways being susceptible to both (38, 59,
64, 76, 102, 118) (Fig. 2). Importantly, these analyses
highlight the mitochondria as a primary hub of nitrosative
signaling in the cell. Of note, key enzymes involved in
[B-oxidation and the TCA cycle as well as mitochondrial
complex I and cytochrome c of the electron transport chain
were shown to be subject to nitrosative modifications (sum-
marized in Fig. 1). Mitochondrial proteins not related to
energy metabolism are also targets of nitrosative signaling.
An elegant example of this comes from the work of Cho
et al. (24), who found that S-nitrosylation of Drpl in
neurons leads to altered mitochondrial fission and the de-
velopment of Alzheimer’s disease.

The finding that the mitochondria are a natural focal point for
nitrosative protein modifications is likely due in part to the
elevated potential for ®NO interaction with O, species within this
organelle. Indeed, ®NO may be produced within the mitochondria
by a splice variant of nNOS or may be a product of cytosolic NOS
activity (43, 101). Importantly, the recent discovery of mitochon-

drial denitrosylation and denitritration pathways suggests that
nitrosative modifications within this organelle may be highly
coordinated to ensure that mitochondrial activity matches changes
in environmental demands (11, 64). On this point, Koeck et al.
(64) have shown that protein tyrosine nitration in the mitochondria
is rapidly and selectively reversed with changing O, tension. It
will be interesting to see in future studies whether nitrosative
modifications regulate mitochondrial substrate utilization and if
obesity-linked iNOS induction contributes to the known patho-
genic perturbations in mitochondrial energy metabolism in the
obese state. Recent data have confirmed that nitrosation of mito-
chondrial proteins using mitochondrial targeted S-nitrosothiol al-
ters the activity of key TCA cycle enzymes in a reversible fashion
(25). These studies suggested that one role for the reversible
inhibition of aconitase, a-ketoglutarate dehydrogenase, succinate
dehydrogenase, and complex I could be to protect tissues such as
heart from free radical bursts during ischemia/reperfusion. How-
ever, modifications that reduce the activity or function of impor-
tant TCA cycle and electron transport proteins also have the
potential to slow substrate oxidation and potentially lead to the
buildup of metabolic intermediates (particularly lipids) that could
impinge on signaling pathways to reduce insulin action. In addi-
tion to identifying the targets of nitrosative modifications within
the mitochondria, future studies should define the functional
impact that each nitrosative modification has on enzyme function

AJP-Endocrinol Metab « VOL 299 « DECEMBER 2010 « www.ajpendo.org

0T0Z ‘9 Jlagwadaq uo Hio AbojoisAyd-opuadle woiy papeojumod



http://ajpendo.physiology.org

Review
E&72

and mitochondrial energy metabolism as a whole. Forthcoming
works should also be aimed at delineating the influence that
altered substrate supply in the context of metabolic challenges
such as exercise and obesity have on nitrosative signaling within
the mitochondria.

Nitrosative Modifications at the Hub of Stress Signaling

RNS may be produced as a result of the activation of
multiple well-known cellular stress signaling pathways that
initiate iNOS transcription. Importantly, these pathways
also appear to be tightly regulated by nitrosative modifica-
tions, which offer a complex form of feedback control. One
relevant example of this is the nuclear factor-k light-chain
enhancer of activated B cells (NF-kB) signaling pathway.
NF-kB activation is dependent on proteasome-mediated
degradation of inhibitory proteins termed IkBs, which bind
NF-kB and mask its nuclear translocation signal. IkB kinase
(IKK)-mediated phosphorylation of IkB targets IkB for
degradation in the proteasome leading to NF-kB nuclear
translocation. It has been reported that RNS may negatively
regulate NF-kB via S-nitrosylation of a critical Cys residue
(Cys?) within IKKB, which inhibits IkB phosphorylation
and therefore prevents NF-kB translocation to the nucleus
(49). On the other hand, there is also evidence of nitrosative
stress-dependent activation of the NF-«kB pathway. In L6
and L8 myotubes, RNS activated NF-kB via tyrosine nitra-
tion of IkBa (7). Taken together, these data suggest that
nitrosative stress may have both stimulatory and inhibitory
effects on the NF-kB signaling pathway depending on the
nature of the prevailing posttranslational protein modifica-
tions. It is thus conceivable that, in acute inflammatory
settings, S-nitrosylation of the Cys residue on IKK[( could
serve as a negative feedback control on the NF-kB-depen-
dent inflammatory response, whereas in a more persistent
state of inflammation tyrosine nitration could supersede the
effect of S-nitrosylation and exacerbate the inflammatory
response. Very recent studies from our group suggest that
iNOS-generated ONOO™ in response to both inflammatory
and lipid challenges is necessary for the maximal activation
of the NF-kB pathway in the liver (23). Studies in mice
lacking iNOS further indicated that iNOS-derived ONOO ™
can nitrate tyrosine residues in both IKKf and IkBa result-
ing in maximal NF-kB activation. Yasukawa et al. indepen-
dently observed similar results in INS-1 B-cells, where
iNOS functions not only as a downstream effector of cyto-
kine-mediated (3-cell damage but also appears to act as an
upstream enhancer of sustained NF-kB activation in (3-cells
(135). These results suggest the existence of an iNOS-
dependent feed-forward mechanism on the NF-kB signaling
pathway. Given that the NF-«kB signaling pathway has been
implicated in the induction of inflammation in obesity-
induced insulin resistance (61, 137), further studies are
warranted to determine how nitrosative modifications of
elements of the NF-kB pathway contributes to the initiation
and propagation of inflammation in tissues of obese animal
models and subjects.

The activity of mitogen-activated protein kinases (MAPKS)
might also be regulated by nitrosative modifications. Studies
in cardiomyocytes (70, 100), fibroblasts (138), enterocytes
(47), human neutrophils (140), astocytes (136), and murine
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neural cells (56) have clearly demonstrated that ONOO ™ is
a potent activator of both p38 MAPK and extracellular
signal-regulated kinase (ERK). Furthermore, c-Jun NHj-
terminal kinases (JNKs), have also been shown to be regu-
lated by various forms of RNS (16, 69). Indeed, JNK
activation occurs in a myriad of cells ranging from rat
cardiomyocytes to human cancer cells and human bronchial
epithelial cells when treated with exogenous *NO donors (2,
55, 84). JNK activation was also observed in cells with
enhanced levels of endogenously produced *NO from iNOS
(26, 98). Interestingly, similar findings in shear-stressed
cells were attributed to elevated levels of endogenous
ONOO™ (44).

Despite the overwhelming evidence showing that RNS might
stimulate JNK activity, contradictory reports demonstrate that
nitrosative stress may also inhibit JNK activation. Studies by Park
and colleagues (96, 97) and So et al. (113) suggest that such
inhibition, like in NF-«kB signaling, is due to S-nitrosylation of
JNK, which leads to suppression of its DNA binding activity.
Importantly, in cardiomyoblasts, ®NO was found to block H>O»-
induced JNK activation, further demonstrating an inhibitory role
of RNS on JNK signaling (22).

Collectively, these studies suggest that nitrosative signal-
ing plays a complex dichotomic role in the regulation of
stress signaling pathways. On the one hand, S-nitrosylation
may prevent exaggerated responses to extracellular stimuli,
while on the other, tyrosine nitration may promote the
exacerbation of stress responses. These observations suggest
that the functional impact of nitrosative signaling depends
on various factors: the concentration of actual RNS, the cell
type, and the presence of other stressing factors such as
reactive oxygen species. The importance of cellular deni-
trosylating and denitrating activity in determining the out-
come of nitrosative signaling is also of interest. In the
perspective of inflammation and/or obesity-induced insulin
resistance, the specific role of these posttranslational protein
modifications on stress signaling pathways in metabolic
tissues is yet to be completely resolved. As for insulin
signaling, the use of mass spectrometry combined with
site-directed mutagenesis in upcoming studies will be vital
to our comprehension of the role that specific nitrosative
modifications play in regulating stress signaling. Future
studies should also be directed toward identifying the spe-
cific radical species and radical-generating enzymes that
contribute to each nitrosative modification.

Transcriptional Regulation by Nitrosative Modifications

In addition to modulating canonical signaling pathways,
RNS also critically regulate gene transcription through di-
rect nitrosative modifications of key transcription factors
and associated nuclear binding proteins. S-nitrosylation has
been shown to effectively limit the DNA binding activity of
a long list of important nuclear receptors and transcription
factors, including NF-«kB, activation protein-1, MyB, hepa-
tocyte nuclear factor 4, and the estrogen receptor (17, 41,
78, 120, 130). This regulatory role of S-nitrosylation on
DNA binding activity appears to depend on the presence of
susceptible reactive cysteine thiols in the critical DNA
binding domains of transcription factors. In line with this,
we recently showed that iNOS-derived *NO desensitizes
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obese mice to the antidiabetic actions of the thiazolidinedi-
one rosiglitazone by reducing the DNA binding and tran-
scriptional activity of their target nuclear receptor peroxi-
some proliferator-activated receptor-y (PPARYy) (29).

In addition to limiting the DNA binding activity of multiple
transcription factors, nitrosative modifications may also stim-
ulate gene transcription. Indeed, ®*NO has been shown to
control cAMP response element-binding protein (CREB)-me-
diated DNA binding and gene expression through S-nitrosyla-
tion of nuclear proteins that associate with CREB target genes
(92, 103). In this work, the authors noticed that ®°NO signaling
modulates histone H3 and H4 acetylation and decided to
investigate whether ®*NO directly influences histone deacety-
lase (HDAC) activity (103). It was found that HDAC2 can be
S-nitrosylated, triggering its release from chromatin and
thereby facilitating histone acetylation and CREB binding to
the CRE-containing promoter sequences (92, 103). In addition
to its role in CREB DNA binding, S-nitrosylation has also been
shown to promote hypoxia-inducible factor (HIF)-law DNA
binding by preventing the oxygen-dependent degradation of
one of its two subunits (71). This ®*NO-dependent HIF-1a
stabilization occurs as the result of S-nitrosylation on Cys>* in
the oxygen-dependent degradation domain. Together, these
data suggest that RNS may exert wide control on cell function
through coordinated regulation of an array of transcription
factors and nuclear binding proteins. Future studies aimed at
understanding how nitrosative signaling integrates with alter-
native signal transduction pathways in the nucleus will be key
to predicting the outcomes of RNS generation on transcription
events. An effort should also be made to determine whether
NOS or denitrosylating enzymes interact or colocalize with
transcription factors or other key nuclear factors.

Nitrosative Signaling in the Endoplasmic Reticulum

The endoplasmic reticulum (ER) is responsible for the synthe-
sis and folding of proteins and also represents a major cellular
calcium store, playing an important role in calcium homeostasis.
The ER is capable of importing calcium via the sarcoplasmic/
endoplasmic reticulum Ca?"-ATPase (SERCA) and exporting
calcium via the inositol triphosphate (IP3) receptor and/or ryano-
dine receptor (RyR), respectively (45). High concentrations of
calcium in the ER are essential for folding and disulfide bond
formation in newly synthesized proteins, because the activities of
several ER chaperones, such as calreticulin, calnexin, and protein
disulfide isomerase (PDI) are all calcium dependent. These mo-
lecular chaperones are central in the maturation and transport of
unfolded secretory proteins; therefore, any disruption of calcium
homeostasis in the ER may lead to the accumulation of unfolded
or misfolded proteins and the development of ER stress.

RNS have been proposed as important inducers of ER stress
(94), since increased ®*NO production has been shown to
negatively impact ER calcium content in 3-cells (18, 30, 35,
94), neurons (126, 127), endothelial cells, and foam cells (131).
Nitrosative modifications appear to underlie the mechanism by
which RNS exert this effect. Indeed, it has been reported that
®NO inhibits calcium-ATPase activity of cardiac SERCA by
nitrating tyrosine residue as well as by S-nitrosylating func-
tional cysteine residues within channel-like domains, thereby
reducing ER calcium import and concomitantly prompting ER
stress (128, 129, 134). S-nitrosylation has also been proposed
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to explain the mechanism by which *NO could pathologically
accentuate calcium export from the calcium release channels
known as RyRs. Reports demonstrated that the activity of
skeletal muscle RyR1 is significantly increased by °NO
through S-nitrosylation (119, 134). Therefore, it seems that
*NO-mediated ER calcium depletion could be regulated by
both tyrosine nitration of SERCA and S-nitrosylation of
SERCA and RyR. Interestingly, it has been shown that RNS
also contribute to ER stress-induced neurodegeneration in a
calcium-independent manner by directly S-nitrosylating the ER
chaperone PDI (12, 85, 126, 127). Together, these data suggest
an important role for nitrosative modifications in the negative
regulation of ER function. It is tempting to speculate that these
nitrosative targets represent a mechanism by which cellular
stress signaling can regulate protein synthesis and apoptosis.
Since a growing body of evidence suggests that ER stress plays
an integral role in the development of insulin resistance and
diabetes (51), further studies are needed to determine whether
RNS exert regulatory control on this process.

Nitrosative Modification of Lipid Species

It is becoming increasingly evident that RNS also play a
major role in lipid biology. Not only do they influence
bioactive lipid synthesis by targeting key enzymes such as
COX-2 (62) and cytochrome P-450 (67) they may also
directly interact with unsaturated fatty acids to form novel
nitro-fatty acids that have distinct bioactivities from their
precursor lipids (6, 39). Lipid reactions with RNS can result
in the formation of cis or trans nitro-alkanes, where the NO,
group is present at the site of the double bond, as well as
nitro-hydroxy and nitro-hydroperoxy lipids (6). Multiple
unsaturated fatty acids including oleate, linoleate and ara-
chidonate have been shown to have nitro-derivatives (54,
125, 133). Importantly, the high number of nitro-fatty acid
species identified to date likely represents the elevated
formation of RNS in hydrophobic environments, such as the
lipid bilayer, which inherently makes lipids excellent can-
didates for nitrosative signal transduction (31, 75, 80, 81,
122).

Contrary to the initial belief that nitro-fatty acids would be
proinflammatory in nature, accumulating evidence suggests
that the transfer of an NO, adduct to unsaturated fatty acids
actually confers anti-inflammatory potential (14, 27, 58, 60, 72,
105, 133). Indeed, the biological activity of nitro-fatty acids
resembles more closely that pertaining to recently identified
families of proresolving hydroxy lipids, namely the lipoxins,
resolvins, protectins, and maresins (108—-110), rather than the
well-known leukotriene or prostanoid classes of bioactive lip-
ids. Notably, due to the important role of iNOS in host defense,
the synthesis of nitro-fatty acids may also be invoked by an
inflammatory signal. This suggests that these novel fatty acids
likely form part of a growing lipid signaling network that
ensures ‘“‘catabasis”, or the timely return to homeostasis fol-
lowing an inflammatory stimulus (109).

Somewhat paradoxically, although nitrosative modifications
directly impair DNA binding and transcriptional activity of
PPARYy (29), two separate nitro-alkanes have been shown to
display physiologically significant PPAR<y agonist activity that
is comparable to that of the synthetic agonist rosiglitazone (5,
14, 93). Since PPARYy plays a major role as a transcriptional
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switch for the resolution of inflammation (93) it will be
interesting to see whether there is a timely progression from
direct inhibitory RN'S-PPARY interactions to stimulatory nitro-
fatty acid-PPARv interactions in the course of self-resolving
inflammation. Importantly, it is believed that a large part of
nitro-fatty acid activity stems from their ability to form revers-
ible covalent adducts on nucleophilic sites of proteins, such as
cysteine residues, in a process termed nitroalkylation (10).
Thus, nitro-fatty acids appear to be mediators of a third type of
nitrosative protein modification that likely possesses differen-
tial regulation to that of S-nitrosylation and tyrosine nitration,
further adding to the complexity of nitrosative signaling
in vivo. Future studies are certainly warranted to determine
whether nitroalkylation, like S-nitrosylation and tyrosine nitra-
tion, influences insulin signaling, mitochondrial energy metab-
olism, stress signaling, and gene transcription in vivo.

Current Limitations in Nitrosative Biology

As one might expect, due to the highly reactive nature and
short half-lives of RNS and ROS, one of the major limitations
in the field is to successfully measure and define the precise
intermediates that are specifically responsible for inducing the
nitrosative modifications of interest. This situation becomes
increasingly difficult as we move from in vitro to in vivo
studies. Currently, electron paramagnetic resonance (EPR) spin
trapping is considered the gold standard for measuring free
radicals, and advancements in this technology have greatly
improved our capacity to study RNS and ROS; however, many
limitations remain inherent to this technique. Notably, there is
the requirement for spin traps or spin probes to be present at the
site of interest. These may be either hydrophobic or hydro-
philic; thus, delivering them to the site of interest may not be
easy to accomplish. Spin trap stability in vivo is also a limiting
factor in the efficacy of this technology. Furthermore, precise,
considered controls are a necessity when EPR is used, since
spin traps may also react with media to produce ex vivo
artifacts. Finally, despite being the gold standard and the only
analytical method to detect reactive molecules in living cells,
the sensitivity of EPR spin trapping is still relatively low at
around 10~° M. Future developments in EPR methodologies
will certainly help advance our understanding of nitrosative
biology in vivo.

In addition to difficulties in measuring the reactive nitrogen
and oxygen intermediates that are responsible for nitrosative
modifications, the field is also restrained by the lack of efficient
methodology for detecting nitrosative modifications per se.
Although a few good antibodies exist for the detection of
3-nitrotyrosine, this is not the case for S-nitrosylation, and thus
the detection of these adducts is somewhat more difficult.
Indeed, the latter modification is highly labile; thus, to study
S-nitrosylation in cells and tissues, it is necessary to perform a
chemical reaction known as the “biotin switch”, in which the
cysteine-bound NO is replaced with a more stable biotin label
that can then be detected by Western blotting or mass spec-
trometry. Since the sensitivity of this method is low, detection
of S-nitrosylated proteins often requires the use of nitrosylating
agents, which may give different or off-target results compared
with physiological settings. Future technologies that improve
our ability to detect or stabilize this labile adduct will advance
the study of nitrosative biology.

NITROSATIVE MODIFICATIONS BY RNS

Conclusions

This review has focused on the role of the RNS-generating
systems such as the iNOS/*NO pathway in producing an array
of coordinated nitrosative modifications on key signal trans-
duction proteins, enzymes, and lipid messengers involved in
metabolic control. We have summarized recent data that
strongly suggest that tyrosine nitration and S-nitrosylation of
insulin-signaling intermediates represent novel means to mod-
ulate metabolic functions in insulin target cells. The recent
identification by proteomics of multiple mitochondrial en-
zymes that are susceptible to nitrosative modifications have
also increased the interest to explore the potential impact of
such modifications on metabolic control in states of increased
RNS production. Future studies will be needed to fully unravel
how these newly established nitrosative modifications of mul-
tiple proteins and lipid species exert a fine control of insulin
action, metabolism, and inflammation in both physiological
and altered metabolic states such as obesity, insulin resistance,
and diabetes.
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