
1287

Review

ISSN 1462-241610.2217/PGS.10.116 © 2010 Future Medicine Ltd Pharmacogenomics (2010) 11(9), 1287–1303

Pharmacogenetics of osteoporosis-related bone 
fractures: moving towards the harmonization and 
validation of polymorphism diagnostic tools

Osteoporosis is a systemic skeletal disease char-
acterized by low bone mass and deterioration 
in the microstructure of bone tissue, which 
causes bone fragility and consequent increase 
in fracture risk [1].

Hip fracture (HF) is the most threatening 
osteoporotic fracture (OF) because of its high 
mortality rate that can reach 30% the year after 
the fracture [2], and 40% in the second year after 
fracture [3]. In addition, 40% of individuals who 
survive do not regain their previous health status 
and become dependent on others to be able to 
perform daily activities [201].

One of the most used and best clinical deter-
minants of bone status of an individual, as well 
as OF, is evaluated through the measurement 
of BMD [4].

Although, many external factors play funda-
mental roles in determining BMD, it has been 
estimated that over 50% of women and 70% of 
men who have suffered fractures did not have 
previously taken osteoporotic BMD values [5]. 
Furthermore, in studies of osteoporosis therapy,  
increases in BMD were not linearly proportional 
to fracture risk reductions. The change in BMD 
induced by antiresorptive drugs explains only 
approximately 15% of the reduction in fracture 
risk [6].

Despite OF generally being a direct conse-
quence of bone fragility, and therefore a key 
component of osteoporosis phenotype, OFs can 
occur as a result of high bone turnover and/or 
nonskeletal factors, such as the tendency to fall [7]. 

Genetic studies of osteoporosis have focused 
on BMD as the most influential predictor of 
fracture risk [202]. These studies were triggered 
by evidence that bone characteristics have 
proven to be highly heritable in twins and fami-
lies, with 60–80% of variance being attributable 
to heritable factors [7]. 

Since osteoporosis has a complex and vari-
able phenotype, and because of its epidemio-
logic interest, many related causative factors 
have been sought. These have included effort to 
establish an association between specific respon-
sible genes or gene groups whose effects could 
interact together [8]. 

Thus, large numbers of studies have been 
reported over the past 15 years regarding osteo-
porosis genes. However, conf licting results 
have been obtained, specifically in those stud-
ies that examined the impact of polymorphic 
molecular structures. It is possible that this is 
owing to small sample sizes and lack of statisti-
cal power. Recently, huge efforts have led to the 
application of high‑throughput methodology 
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(i.e., genome-wide association studies [GWAS]) 
to elucidate relevant polymorphisms associated 
with clinical data (briefly summarized later). The 
information obtained from these studies is much 
appreciated, but its validity has to be confirmed 
and replicated for each population. Moreover, it 
is important to consider genetic data with several 
potential interaction factors and environmental 
factors, such as diet, ethnicity and lifestyle. All 
of these effects are well integrated in a recent 
GWAS of vitamin D levels (VDR) levels and 
polymorphisms that present an assessment with 
genotyped data replication [9]. 

Validation of functional polymorphic vari-
ants across different populations is a task for the 
near future that should not be restricted exclu-
sively to large sampling or expression-profiling 
research [10]. 

As rapid technological advances provide 
increased accuracy and precision, issues related 
to validation must still be addressed. There is a 
need for the parallel validation of these techno
logies as they make the transition from research 
applications to routine clinical practice  [11]. 
Technologies that can accurately identify genetic 
polymorphisms will dramatically affect routine 
diagnostic processes and future therapeutic 
developments in personalized medicine. 

There are different priorities among coun-
tries to take into account, especially on the 
issue of funding for translational research. In 
many hospital settings, healthcare is focused 
on the treatment of existing disease and little 
or nothing is done to prevent the underlying 
disease. Therefore, economic analysis should be 
performed to examine the cost benefit analysis 
of the disease. However, the contribution of 
pharmacogenetics combined with pharmaco-
economics could benefit from studies regarding 
direct–indirect hospital spending on monitoring 
treatments performed in situ.

Taking these points into account, a signifi-
cant clinical and scientific challenge will be the 
contribution towards developing and improving 
an accessible, rapid and easy methodology for 
the identification of SNPs, thereby, facilitating 
the evolution of pharmacogenetic diagnostic 
tools, and so cause a real impact in osteoporosis 
research worldwide.

In this context, the purpose of the present 
article is to describe the current state of the art 
techniques used in the study of factors affect-
ing osteoporosis, specific pharmacotherapeutic 
treatments, selected putative candidate genes for 
BMD, osteoporosis and of risk, and their interin-
dividual variability. Hopefully, these factors will 

be able to serve as models in the compliation and 
use of tools for genotype validation and replica-
tion studies. Consequently, this work intends to 
highlight the need for harmonizing SNP nomen-
clature and making simple molecular biology 
tools for establishing routine clinical research 
methodology for SNP determination easily 
available, such as PCR-RFLP, PCR‑sequencing 
and/or allele discrimination methods. 

Identification of individual fracture 
risk profiles
The assessment of fracture risk has been mainly 
based on estimation of BMD and past history of 
fractures [12,13]. However, even though BMD is 
a very potent risk factor, it cannot itself explain 
the whole risk presented for every patient. 
Several clinical guides [201], currently recom-
mend treating women with a BMD T‑score 
lower than ‑2 without risk factors, women with a 
T‑score lower than ‑1.5 and one or more risk fac-
tors and women with a past history of vertebral 
and/or HF, irrespective of BMD. Nevertheless, 
fracture risk is directly related to BMD, even 
though there is no threshold value that pre-
dicts exactly who is going to suffer a fracture. 
Moreover, the efficacy rate of treatments for 
osteoporosis is only 48 % [14]. The individual 
likelihood of suffering a fracture depends on 
the combination of several risk factors [15–17]. 
Therefore, the prophylactic treatment for pre-
venting fractures should be designed, at least in 
part, using the risk profile for each individual. 
Advances in genetics knowledge and environ-
mental factors may allow a more personalized 
design for osteoporosis therapy and the preven-
tion of fractures. Since there is an unpredictable 
response to different treatments, genetic infor-
mation can, thus, potentially be used to identify 
patients who are likely to respond (or unlikely 
to respond) to a specific pharmacological ther-
apy. Pharmacogenetic data can contribute to 
developing this insight.

Absolute estimation for the 
probability of major osteoporotic 
fracture & treatment initiation: 
fracture risk assessment tool
The WHO has proposed that drug therapy for 
treatment of osteoporosis should be considered 
when there is a BMD value between ‑2.5 or 
less in total for hip, femoral neck and/or lum-
bar spine BMD [18]. What is unclear, is who 
should receive pharmacologic treatment out of 
those patients who are at the stage of osteopenia 
(T‑score between ‑1 and 2.5).
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In order to resolve this discrepancy, the WHO 
have developed an algorithm called fracture risk 
assessment tool (FRAX®) that can calculate the 
probability of fracture over 10 years, providing 
specific risks for HF and OF. This algorithm 
uses both the femoral neck BMD (optional) and 
clinical risk factors with an impact on fracture 
risk independently of BMD [203]. Moreover, this 
tool is used only for postmenopausal women and 
men aged over 50 years, who have not previously 
received drug treatment.

This algorithm is freely available and 
allows physicians and patients to make more 
informed decisions based on the potential risk 
of fracture without treatment against the ben-
efits and possible adverse effects of different 
therapeutic agents.

Although there is no universal consensus on 
the cutoff point to establish the drug treatment 
for a patient, in some countries such as the USA 
and UK, a FRAX rate for HF between 3 and 7%, 
respectively, has been proposed [19,20]. In Spain, 
this consensus has not yet been implemented and 
validated; however, an internal recommendation 
has been to initiate drug treatment when FRAX 
is 5% for HF (data not shown).

As well as FRAX, a ‘Fracture Risk Calculator’ 
tool has been developed and validated using 
data from the internationally renowned Dubbo 
Osteoporosis Epidemiology Study conducted 
by the Osteoporosis and Bone Biology Program 
of the Garvan Institute of Medical Research 
(Sydney, Australia). The study, which began in 
1989, includes more than 2500 men and women 
aged 60 years or more from the Australian city 
of Dubbo. The longest running study of its kind 
in the world, it has contributed major changes to 
our understanding of osteoporosis in women and 
men, including fracture risk, impact on quality 
of life, and even survival [21,204].

Pharmacology treatment used  
for osteoporosis
Over the past two decades the range of therapeutic 
options available for the treatment of osteoporosis 
and fracture prevention has increased dramatically 
with the development of potent antiresorptive and 
anabolic agents. The antiresorptive agents include 
bisphosphonates (e.g., alendronate, risedronate, 
clodronate, etidronate, ibandronate and zole-
dronic acid), raloxifene, estrogen, and calcitonin. 
Anabolic agents include, for example, teriparatide 
(recombinant human parathyroid hormone 1–34) 
and possibly strontium ranelate, which have been 
suggested to induce a combination of modest 
effects on bone formation and resorption [22].

�� Bisphosphonates
Bisphosphonates are the most widely used class of 
currently approved inhibitors for bone turnover. 
Their main action is to inhibit bone resorption 
mediated by osteoclasts. Bisphosphonates bind 
to bone surface active sites and alter remodeling 
osteoclastic activity. It has been proposed that 
two distinct molecular mechanisms are respon-
sible for the effects of these drugs on osteoclast 
function. Non-nitrogen containing bisphospho-
nates (e.g., etidronate and clodronate) alter the 
cell function to metabolize to analogs cytotoxic 
ATP‑bisphosphonates. The nitrogen‑containing 
bisphosphonates (e.g., alendronate, risedronate, 
ibandronate and zolendronic acid) have been 
shown to have greater antiresorptive power than 
non‑nitrogen containing bisphosphonates  [23]. 
The mechanism of action of this last group 
appears to be through its binding to farnesyl 
pyrophosphate synthetase, inhibiting enzy-
matic activity in the intracellular mevalonate 
(3‑hydroxy‑3‑methylglutaryl CoA reductase) 
pathway and halting production of necessary ste-
rols, cholesterols and lipids. Loss of these intra-
cellular compounds leads to a decrease in post-
translational modification of key proteins (Rab, 
Rac and Rho). Regulation of central osteoclast 
cellular activity is interrupted, and ultimately 
apoptosis of the osteoclast occurs. This mecha-
nism of action seems to be limited to osteoclasts 
and is believed to be owing to the binding of the 
drug to hydroxyapatite sites in bone, with subse-
quent cellular ingestion occurring strictly with 
osteoclasts during bone resorption [24].

�� Raloxifene
Raloxifene, a selective estrogen receptor (ER) 
modulator, competitively inhibits 17‑b estradiol 
at the ER. Binding of raloxifene to the ER results 
in a change in the receptor itself and prevents 
coregulator protein binding and activation of 
the blocked ER [25]. Raloxifene blocks activa-
tion of growth factor b‑3, increasing the rate of 
osteoclast apoptosis and osteoblast differentia-
tion, decreasing bone resorption and regulating 
bone remodeling [26].

�� Hormone replacement therapy
Hormone replacement therapy (HRT) such as 
17‑b estradiol (estrogen) acts on the bone in two-
ways: directly and indirectly. The indirect action 
of estrogen involves the regulation of growth 
factors and cytokine production in osteoblasts 
which, in turn, regulate osteoclast differentia-
tion and activity. Estrogens may also act directly 
on osteoclastic bone resorption [27].
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�� Calcitonin
Calcitonin is an endogenous hormonal peptide 
produced in the thyroid. The release of calcitonin 
is increased by the elevation of blood calcium 
levels. It has been shown in vitro that, at low 
concentrations, calcitonin causes a rapid, albeit 
transient, change in the cytoskeletal structure of 
active osteoclasts. This structural change renders 
the osteoclasts ineffective but does not cause 
apoptosis of the osteoclast cell. The change in 
structure leads to a reduction in bone resorption. 
It has been reported that the effects of calcitonin 
are more apparent in trabecular bone than in cor-
tical bone, which is most likely owing to increased 
bone turnover at the trabecular bone [28].

�� Teriparatide
Teriparatide is a recombinant formulation of 
the N‑terminal chain 34‑amino acid fragment 
of parathyroid hormone. Teriparatide works 
similarly to the endogenous hormone, regu-
lating calcium and phosphorus metabolism in 
the bones and kidneys. Teriparatide, given in 
intermittent doses, acts as a bone anabolic agent 
via stimulating osteoblast function, increasing 
gastrointestinal calcium absorption, and increas-
ing renal tubular resorption of calcium. When 
a higher continuous dose is achieved, it stimu-
lates osteoclast function. Hence, teriparatide can 
increase or decrease bone mass depending on the 
dose [22].

�� Strontium ranelate
Strontium ranelate has a combination of modest 
effects on both anabolic and antiresorptive activ-
ity, increasing collagen and noncollagen protein 
synthesis, enhancing preosteoblast differentia-
tion, inhibiting osteoclast differentiation and 
reducing osteoclast function [29].

�� New targeted therapy
Another new drug is denosumab [205]. It is a fully 
human monoclonal antibody to RANKL, an 
essential mediator of osteoclastic bone resorp-
tion [30]. RANKL plays a major role in the patho-
genesis of postmenopausal osteoporosis, structural 
damage in rheumatoid arthritis, and bone loss 
associated with other skeletal disorders. In clinical 
trials performed in postmenopausal women with 
low BMD, denosumab increased BMD and sup-
pressed bone resorption in a rapid, sustained and 
reversible manner. In women with postmenopausal 
osteoporosis, denosumab 60 mg subcutaneously 
given every 6 months reduced the risk of verte-
bral, hip and nonvertebral fractures compared with 
placebo. Compared with alendronate, denosumab 

provides a greater increase in BMD and greater 
decrease in bone turnover markers. Patients switch-
ing from alendronate to denosumab increase BMD 
more than those continuing alendronate [31]. There 
are, however, no head-to-head fracture end point 
comparison studies.

General pathways involved in bone 
homeostasis & main genetic factors
The recognition that several aspects of bone 
homeostasis are largely determined by genetic 
factors has led to an intensive search for spe-
cific genes associated with these quantitative 
and qualitative characteristics of bone and OF 
risk. In each case the first steps were to identify 
and verify a relationship between a gene and 
BMD [32]. Currently, many candidate genes have 
been investigated as valuable tools for their asso-
ciation with BMD and OF risk. However, the 
excitement surrounding early studies of allelic 
variation have often continued into controversy 
owing to the failure of independent replication, 
possibly owing to insufficient statistical power 
and false-positive results [33,34]. Genes involved 
in common pathways have been described as 
being related to the risk of osteoporosis, risk of 
hip and vertebral fractures and BMD values. 
These gene variants could affect homeostasis and 
bone structure, and thus measured BMD values. 

Given the available studies from different 
reviews and given the clinical importance of 
osteoporosis, for this study we choose to be focus 
on those pathways and genes most studied in 
relation to BMD and osteoporosis fracture risk. 

In this context, one of the active pathways is 
Wnt signaling that participates strongly in the 
process of bone formation and resorption, which 
include transmembrane proteins, and the LRP5 
and LRP6 [35]. Other transmembrane proteins, the 
ITGB3, are vital for the maturation of osteoclasts 
and thus for bone resorption [36]. 

The osteoclastogenesis pathway is also involved 
in the process of bone remodeling, through the 
activity of OPG, RANK and RANK‑L [37]. 
The two latter players in this signaling pathway 
enhance osteoclast number, survival and activity, 
while OPG acts as a competitor for binding to 
the RANKL receptor and thus inhibiting their 
activities [37,38].

Likewise, the active metabolite of vitamin D 
(1a,25(OH)2D3) plays a fundamental role in 
bone metabolism by its binding to its recep-
tor, the VDR. It regulates calcium homeostasis 
through the binding and nuclear translocation 
of the 1a,25[OH]2D3 to regulate bone turnover 
and increase gut calcium absorption [39]. 
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Collagen is an important component of the 
body’s structural proteins. COL1A1 is the larg-
est and most abundant constituent of all bone 
tissue proteins, and mutations in its structure or 
regulation are associated with osteoporosis [40]. 

Synthesis of estrogens is essential for the 
acquisition and maintenance of bone mass, pre-
dominantly in women [41]. The physiological 
functions of estrogens are performed when they 
bind to the a‑ and b‑receptors (ESR‑a, ESR‑b), 
the final biological impact being expressed in 
both osteoblasts and osteoclasts [42].

Finally, FDPS, which is a key enzyme in the 
mevalonate pathway, has been demonstrated to 
be involved in the regulation of mechanisms 
by which bisphosphonates induce apoptosis of 
osteoclasts [43].

A summary of each of the genes with their 
respective signaling pathways is detailed in Table 1.

SNPs in potential candidate genes 
and genome-wide association 
studies related with osteoporosis, 
BMD & osteoporotic fractures 
The search for and discovery of genes that are 
involved in the regulation of a clinical trait is 
mainly based on linkage or association, or both. 
Linkage analysis tracks the inheritance of a trait 
and identifies chromosomal regions that deviate 
from independent segregation with that trait. 
As previously described, association analysis 
determines whether the genetic make-up in 
those with and without the trait is different and 
seeks to identify specific DNA loci (or gene vari-
ants) that are responsible for the difference [44]. 
Linkage and association analysis use two major 
approaches for their gene search: GWAS and the 
screening of candidate genes [45].

The search for candidate genes is based on 
prior knowledge of the potential function of 
genes involved in metabolic pathways, including 
the biochemistry, pharmacology and physiology 
of bone formation and resorption. On the other 
hand, through genome‑wide scanning, a set of 

markers on a genome map have been selected on 
the basis of utility without any a priori hypoth-
esis (so‑called hypothesis‑free research) for 
analysis of association with a phenotype [46,47].

Moreover, recent reviews regarding genetic 
susceptibility to osteoporosis have compiled 
many candidate genes, which have been iden-
tified through studies of rare bone diseases, or 
through modern technologies such developing 
GWAS  [48,49]. However, even these GWAS-
identified loci require functional validation 
by replication studies and expression profiling 
relevant to skeletal biology systems [50]. 

Even though most genes of osteoporosis and 
their variants remain to be discovered, data on 
those genetic alterations that have already been 
demonstrated to have a clinical impact should 
be available for physicians. In this regard, while 
performing this study, the need for consensus in 
different pharmacogenetic aspects has become 
obvious. The current lack of consistency in SNP 
nomenclature necessitates a set of harmoniza-
tion rules, accredited laboratories and guidelines 
from pharmacogenetic reference committees 
that would ideally provide global requirements 
for the validation of functional diagnostic SNPs 
affecting osteoporosis.

Current high‑throughput methodologies such 
as GWAS have been performed on osteoporosis 
patients for finding and identifying the most 
important and common gene variants associ-
ated with osteoporosis and fracture risk  [51–53]. 
Most of the SNPs associated with this disorder 
have been demonstrated via significant p-values 
in different studies [54] and different popula-
tions, and most of the common important SNPs 
found have been objects of careful analysis, and 
have been included in this article (see later and 
Table 1). In the near future, it is hoped that these 
results could be expanded to other genes and 
pathways (with further replication cohorts), 
along with a further examination of many SNPs 
potentially associated with BMD/osteoporosis, 
identified with statistical p-values just below 

Table 1. Pathways and some of the candidate genes involved in osteoporosis and 
osteoporosis fracture. 

Name of pathway Putative candidate genes

Osteoclastogenesis OPG, RANK, RANK-L

Wnt signaling LRP5, LRP6, ITGB3, ALOX-15

Vitamin D VDR

Estrogen ESR-a, ESR-b
Collagen COL1A1

Mevalonate FDPS

Homeostasis calcium–phosphorus CaSR
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the cutoff values required for significance at the 
genome‑wide level [55]. However, this powerful 
approach is not readily translated into routine 
hospital care, as it is used primarily for hypoth-
esis testing rather than diagnosis and, in any 
case, the required skills and tools are not widely 
available. Nevertheless, these studies provide 
valuable data for approaching specific significant 
genotyping in osteoporosis and OF. The present 
work highlights some of the possible candidate 
genes belonging to specific pathways and their 
polymorphisms that have been already associ-
ated with genetic osteoporosis variability, BMD 
and/or osteoporosis fractures. 

Thus, in the osteoclastogenesis pathway, a 
population study performed on 5861 men and 
women from Iceland, Denmark and Australia, 
identified SNPs linked to the values of BMD 
at the hip and spine level. SNPs in the genes 
for OPG, RANK and RANK‑L were all associ-
ated with a variation of hip and spine BMD [56]. 
Furthermore, in a recent meta‑analysis, a 
GWAS of 150 genes confirmed that three of 
these genes, OPG, RANK, RANK‑L, reside in 
the same biological pathway, which influences 
bone resorption [57]. In another GWAS where 
a total of 2653 males from eight European 
countries were genotyped, genetics variants in 
the OPG–RANK–RANK‑L signaling path-
way influenced variation in bone turnover and 
BMD [58]. 

A GWAS conducted on 2074 women in 
the UK concluded that the SNP rs4755801 
(4887 +3491G>A) of the gene for OPG, that is, 
harboring allele A, is significantly associated with 
BMD measurement and predisposes individuals 
to osteoporosis and osteoporotic fracture such as 
HF [53]. In another similar case–control study in 
patients with osteoporosis, BMD at the femoral 
neck area and total hip was lower in individu-
als with the allelic variant G of SNP rs3102735 
(A163G) of OPG [59]. Moreover, other authors 
observed a significant association of this SNP 
with HF and wrist fracture in postmenopausal 
Caucasian women [60]. Another study performed 
in 136 Slovenian postmenopausal women, the 
aim of which was to find SNPs in the OPG gene 
and their possible association with BMD, the 
authors detected that a particular genotype, GG, 
in the SNP rs2073618 (G1181C) had signifi-
cantly lower lumbar spine BMD than subjects 
displaying G1181C [61]. A separate study assessed 
previous results, whose minor C allele frequency 
in the same SNP rs2073618 was associated with 
higher levels of both N‑terminal P1NP and 
CTX‑1 and lower lumbar spine BMD [58].

In two GWAS performed in women of 
European background the SNP rs3018362 of 
the RANK gene was significantly associated with 
BMD in the hip area [56,62].

A study of 404 non-osteoporotic and osteo-
porotic postmenopausal Caucasian women, 
the SNP rs9533155 (G693C) of the RANK‑L 
gene was associated with BMD of the femo-
ral neck [63]. In a GWAS, as listed above, the 
SNP rs9594759 in RANK‑L was significantly 
associated with lumbar BMD [56]. Also, in the 
study listed previously where 2653 men from 
eight European countries were genotyped, the 
minor allele of SNP rs9594759 (C) RANK‑L was 
associated with lower P1NP, CTX‑1 and BMD 
values [58]. 

In other studies of postmenopausal women, 
the SNP rs9525641 (C290T) in RANK‑L was 
a risk factor for the susceptibility of postmeno-
pausal osteoporosis at the femoral neck [64]. 
Other authors have also reported that the com-
bination and expression alteration caused by 
variation on OPG, RANK and RANK‑L genes 
could provoke gene–gene interactions that also 
influence BMD [65,66].

All these interesting results would be ben-
efited and complemented by very new expres-
sion approaches linked to the existing SNPs that 
could increase the overall functional impact on 
BMD and fractures, similar to those recently 
described [50,67]. 

In the case of the Wnt/b‑catenin pathway, 
several SNPs have been associated with varia-
tions in hip BMD [68]. In particular, in a ran-
domized double‑blind study in Caucasian 
men with osteoporosis the SNP rs3736228 
(C3824T) of the gene LRP5 was significantly 
associated with BMD in all of the areas within 
the proximal femur (i.e., femoral neck, total 
hip and trochanter) [69]. Similarly, in a study in 
young men not involved in any regular physi-
cal activity, individuals with the AA genotype 
of SNP rs4988321 (G1999A/C) had lower hip 
BMD [70]. In a prospective multicenter study in 
Europe and North America, among 37,534 indi-
viduals with prevalent fractures, lower femoral 
neck BMD and higher fracture risk was apparent 
in those with both alleles encoding Met667 and 
Val1330 of SNPs rs4988321 (G1999A/C) and 
rs3736228 (C3824T), respectively. Thus, this 
LRP5 haplotype could be associated with HF 
in Caucasian [71].

In relation to the LRP6 gene, in a study 
of 10,275 Dutch men and women, aged over 
55 years, the SNP rs2302685 (G3184A) was 
associated with bone parameters of width and 
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height of the hip, and also with the risk of 
osteoporotic HF and vertebral fractures  [72]. 
However, in another study no association of 
the polymorphism in LRP6 was found for any 
osteoporosis phenotype [71].

In the case of integrins (e.g.,  ITGB3), in a 
study lasting 25 years of monitoring Danish men 
and women for HF risk, those homozygous for 
the SNP rs5918 (T176C) had double the risk 
of HF, mainly confined to postmenopausal 
women [73].

In other pathways, the ALOX‑15 gene, 
in women with the TT genotype of SNP 
rs7220870 (G48924T) in a longitudinal cohort 
study conducted in 9704 individuals from a 
white American population, had a higher rate 
of HF. Also, this SNP was associated with 
BMD change and the risk of other OF as well 
as HF [74]. However, a study in postmenopausal 
women from northeast London, UK, found no 
SNPs in ALOX‑15 to be significantly associated 
with the phenotype of BMD or fractures [75].

Currently, the pathway of vitamin D, is an 
important and very well studied pathway affect-
ing bone and calcium homoeostasis. It involves 
the the VDR gene, which was the first gene can-
didate studied at molecular genetic association 
level [32]. Morrison et al. observed that the SNPs of 
the VDR gene, BsmI rs1544410 (G1024 +283A), 
TaqI rs731236 (T1055C) and FokI rs10735810 
(T2C), were associated with variability in BMD 
of the femoral neck and trochanter in individu-
als. Also, in a study conducted in premenopausal 
women, postmenopausal women with or with-
out osteoporosis and elderly men, all of them 
Caucasians, there was a significant relationship 
with VDR SNPs rs11568820, Cdx2 (G1739A), 
and the magnitude of BMD of femoral neck 
and total hip [65]. In addition, this same study 
found that in older men there was a significant 
association between FokI rs10735810 SNP and 
the measurement of femoral neck BMD, and 
in the case of postmenopausal women, there 
was a significant relationship between femoral 
neck BMD and both SNPs (Cdx2 rs11568820, 
FokI rs10735810). Similarly, in postmenopausal 
women, there was a significant association of 
the BsmI SNP rs1544410 with the measurement 
of femoral neck BMD together with the SNP 
rs11568820 Cdx2. Furthermore, in a prospective 
study in 589 postmenopausal women, the BsmI 
SNP rs1544410 was associated with increased 
risk of HF independent of BMD, bone turnover 
markers, hormone levels and age [76]. However, 
this suggested that the mechanisms by which 
VDR genotypes might influence bone strength 

are unclear. On the other hand, a multicenter 
study, GENOMOS, did not find any association 
between the BsmI rs1544410, TaqI rs731236 and 
FokI rs10735810 SNPs, and BMD or fractures. 
However, these authors reported an association 
between Cdx2 rs11568820 and risk of vertebral 
fractures [77]. In the same way, a meta‑analysis 
evaluated the genetics effect of the BsmI and 
TaqI polymorphism on fracture risk in 13 stud-
ies (1632 fracture cases and 5323 controls). The 
researchers did not find evidence of any relation-
ship between these polymorphisms and fracture 
risk with any genetic model [78]. In other work 
conducted in 677 postmenopausal Caucasian 
women, individuals with the CC genotype of the 
TaqI SNP rs731236 (T1055C) had an increased 
risk of HF, independent of BMD and age [79]. 
Conversely, it is worth noting recent studies on 
the association between VDR polymorphisms 
and other risk factors in fracture such as falls, 
balance and muscle power without direct effect 
on BMD or fracture. For example, in one of 
the studies carried out in two separate Scottish 
population cohorts in postmenopausal women, 
the authors investigated the association between 
VDR polymorphisms (BsmI, TaqI, FokI, Cdx2 
and ApaI) and reported falls. They found an 
association for BsmI SNP with falls, balance and 
muscle power measurements in both cohorts, 
specifically carriers of the A allele [80]. In addi-
tion, in another similar study of VDR polymor-
phisms (BsmI and Fokl) and falls in a group of 
older Italian adults 80 years or more, the GG 
genotype of the BsmI gene was associated with 
a reduced rate of falls compared with AA geno-
type, whereas no effect on falls was shown for 
Fokl polymorphisms [81]. 

In the pathway of estrogens, in a meta‑analysis 
of work conducted in eight European clinical cent-
ers, ESR‑a was involved in susceptibility to frac-
ture risk and the XbaI SNP rs9340799 (C351G) 
contributed to fracture risk by mechanisms inde-
pendent of BMD. This is despite BMD being a 
plausible biological mediator of the clinical effect 
for the polymorphisms involved in the estrogen 
pathway [82]. The authors also suggested that these 
effects could be mediated through effects on bone 
quality, geometry, turnover or other nonskeletal 
risk factors for fracture, such as muscle strength.

In a multicenter study on 641 premenopausal 
Caucasian women (aged 20–50 years), those 
with PvuII SNP rs2234693 (T397C) in the 
ESR‑a gene were more likely to report a family 
history of HF. Also the AA and AG genotype 
AluI SNP rs4986938 (G1730A) in the ESR‑b 
gene were strongly associated with this specific 
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type of fracture. It was also realized that those 
patients aged between 41 and 50  years with 
the AA genotype of the AluI SNP rs4986938 
(G1730A) in the ESR‑b gene had a low bone 
density compared with the alternate homo
zygote, GG [83]. However, in a cohort study 
conducted in postmenopausal white women, no 
relationship was identified between the PvuII 
SNP rs2234693 and XbaI SNP rs9340799 
with hip BMD or risk of HF [74]. On the other 
hand, the effect of different polymorphic sites 
in the same gene were evaluated in a Italian 
population based study with respect to the three 
ESR‑a gene polymorphisms combined (intron 1: 
PvuII and XbaI; exon 1: TA dinucleotide repeat 
polymorphisms 5´ upstream) in 610 Italian 
postmenopausal women [84]. Becherini et  al. 
observed strong linkage disequilibrium between 
intron‑1 polymorphic sites and the microsatellite 
(TA)n dinucleotide SNPs, with a high degree 
of coincidence of the short TA allele and the 
presence of PvuII and XbaI restriction site. They 
do not find any significant relationship between 
variability in intron‑1 and BMD, but observed a 
correlation between (TA)n repeat allelic variants 
and lumbar BMD, where patients with a low 
number of repeats (TA <15) showed the lowest 
BMD values. They concluded that the (TA)n 
dinucleotide repeat polymorphism at the 5́  end 
of the ESR‑a gene could account for part of the 
heritable component of BMD; however, no con-
clusive results were found in relation to fracture 
risk. A very similar study in a Danish population 
performed in 190 patients with vertebral fracture 
and 184 control patients found modest contribu-
tion of TA polymorphisms to the reduction of 
BMD and increased risk of OF [85]. Moreover, 
PvuII, XbaI, BstUI and TA repeat polymor-
phisms seems to be in linkage disequilibrium in 
both results studies [84,85].

Finally, in the collagen‑1 pathway, the COLA1 
Sp1 SNP, rs1800012 (G2046T) (referred to by 
Mann et  al. authors as +G1245T) has been 
reported to be related with low BMD and the 
risk of HF. In a recent meta‑analysis study 
there was a significant decrease in BMD values 
in patients with GT genotype and especially 
in those individuals homozygous for TT  [86]. 
Similarly, another study found that those 
postmenopausal women with a homozygous 
TT genotype of the SNP, had increased risk 
of HF independent of BMD and age [79]. In 
the GENOMOS multicenter study, the Sp1 
rs1800012 SNP was associated with femoral 
neck BMD with a recessive mode of inherit-
ance [87]. In this regard, another case–control 

study in 462 Caucasian osteoporotic patients 
investigated the effect of the polymorphisms 
of collagen‑1 and their haplotypes on the 
risk of osteoporosic vertebral fracture, BMD 
and biochemical markers of bone turnover. 
They found that the rs1800012 (G2046T) 
and rs24122298 (1663indelT) SNPs were in 
almost complete linkage disequilibrium. The 
T allele of the Sp1 rs1800012 (G2046T) and 
rs2412298 (1663indelT) SNPs were associ-
ated with lower lumbar spine BMD, whereas 
the T allele of the rs1107946 (G296T) SNP 
(referred to by Husted et al. as ‑1997 G/T) 
was associated with a minor effect on BMD, 
but increased the risk of vertebral fracture [88]. 
Moreover, in a large population‑based cohort 
of an elderly Caucasian study, an increased 
risk of fragility fracture and lower BMD was 
observed in female carriers of the T allele in the 
Sp1 SNP. However, they did not find influence 
on fracture or BMD in postmenopausal women 
associated with the rs1107946 (G296T) poly-
morphism by itself, though power limitations 
cannot be excluded [89].

In summary, the results compiled for each 
pathway remain conflicting, possibly owing to 
the complexity of the osteoporosis phenotype 
itself, added to by limitations in the mole
cular tools available. These problems should be 
approached and resolved by common effort for 
developing and improving screening, risk assess-
ment, diagnosis and treatment initiation [90]. 
In this sense, an important contribution would 
be the complementary use of validated genetic 
testing in clinical practice [91], specifically in 
pharmacogenetic analyses, which has been 
described in a recent compilation of genetic 
techniques [92]. 

Pharmacogenetics of the 
antiresorptive treatments  
for osteoporosis
Patient characteristics, presumably including 
genetic factors, determine individual responses 
for each specific drug [93]. 

Understanding the effects of such genetic fac-
tors not only offers the possibility of recognizing 
individuals that risk suffering an OF, but may 
also influence choice of antiosteoporotic drugs, 
whose clinical impact is measured by effects on 
BMD and markers of bone turnover.

Although, there is clear evidence of genetic 
influence on the variation in the efficacy and 
safety of treatment with pharmacological agents, 
there have been few conclusive data related to 
the pharmacogenetics of osteoporosis and OF, 
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and indeed, it is only recently that research on 
the genetics of osteoporosis has started in full 
swing [94].

The therapeutic breakthroughs that have 
emerged for treatment of osteoporosis may 
improve the quality and quantity of bone 
amongst a range of pharmacological alterna-
tives (e.g., bisphosphonates, raloxifene, stron-
tium ranelate, teriparatide and parathyroid 
hormone, among others), all of which are used 
for prevention of OF [95].

All these drugs have been shown to reduce 
the risk of OF to a greater or lesser extent, along 
with concomitant increases in bone density and 
decreases in high bone turnover [96]. In addi-
tion, clinical guidelines have recommended the 
use of bisphosphonates for both primary and 
secondary prevention of OF [206,207]. Moreover, 
it should be noted that all drugs used for osteo-
porosis have potential for adverse reactions 
that lead to concerns regarding their long‑term 
use  [22]. Bisphosphonates are predominantly 
used, because they are very effective drugs and 
particularly because of their falling cost with the 
availability of generic versions, clinical practice 
guidelines present them as priority drugs for the 
treatment of osteoporosis and/or prevention of 
fracture [206,207].

In many clinical trials, the relative risk reduc-
tion of fracture incidence is approximately 50%, 
showing a high variability in individual response 
to treatment [93]. In terms of BMD, even in well 
observed randomized controlled trials, it is esti-
mated that 10% of patients do not respond as 
expected to antiosteoporotic therapy [97]. Thus, 
the efficacy and safety of bisphosphonates varies 
between individuals, with 5–10% being non
responders and a small but significant proportion 
suffering clinical adverse events [98]. 

However, bisphosphonates are associated with 
adverse effects, including the arise of osteone-
crosis of the jaw (ONJ). This has been reported 
most commonly in patients with bone metas-
tases, its use is recommended in these patients 
owing to their high risk of bone pain and frac-
tures [99]. In these cases, bisphosphonates are 
administered intravenously and usually at short 
intervals of weeks, rather than the annual dos-
ing in osteoporosis, and often over years. The 
risk appears to be related to the overall dose of 
bisphosphonates used, but has also been associ-
ated with genetic polymorphisms. In one GWAS 
carried out in 2 groups of patients with mul-
tiple myeloma (22 with ONJ and 65 without), 
all receiving bisphosphonates over 2 years [100], 
researchers found that one SNP out of four in 

CYP2C8 rs1934951, was associated with a risk 
of ONJ. Individuals homozygous for the T allele 
had increased likelihood of developing ONJ. 
This adverse reaction has also been linked to 
polymorphisms of CYP3A [208].

With regards to drug efficacy, several stud-
ies have examined the association of specific 
polymorphism with response to drug treatment 
of osteoporosis. Within the family of bisphos-
phonates, alendronate (ALN) has demonstrated 
efficacy in reducing bone resorption and reduc-
ing the risk of fragility fractures in postmeno-
pausal women. Despite the overall effectiveness 
of ALN, there have been few studies evaluat-
ing the relationship between polymorphisms 
and response to this drug. One such study that 
was performed in osteoporotic postmenopausal 
women treated with ALN for 12 months, there 
was an association between VDR gene BsmI 
SNPs and response to ALN, change from base-
line in lumbar BMD being higher in GG than 
in AA BsmI VDR genotype [101]. In another sim-
ilar study [102], the BsmI genotype was associ-
ated with effectiveness of ALN treatment, alone 
or in combination with other antiosteoporot-
ics. For example, treatment with ALN and 
raloxifene led to a more marked improvement 
in BMD and bone turnover markers in patients 
with the homozygote GG or AA VDR geno-
types. In heterozygous AG and homozygous 
GG patients, the combination of ALN with 
HRT and the association of raloxifene plus 
ALN had a stronger effect on BMD compared 
with either HRT or raloxifene treatment alone, 
but no more effectively than ALN alone.

Another of the few genetic studies on the 
effectiveness of ALN analyzed the relation-
ship between the ESR‑b gene RsaI SNPs and 
treatment response of ALN in postmenopausal 
Caucasian women with osteoporosis. This group 
found no relationship between this SNP and 
changes of BMD or bone markers in response 
to ALN [103]. 

Another bisphosphonate, etidronate, has also 
been studied in relation to the VDR gene [104]. 
In these study 24 late osteoporosis postmeno-
pausal women were evaluated during 1 year of 
treatment with etidronate and calcium supple-
mentation. Lumbar spine BMD increased at a 
significantly faster rate in the AA and AG group 
compared with the GG group, and a significantly 
higher decrease in osteocalcin level was observed 
in the GG group as compared with AA subjects.

In the case of resorptive HRT, a US study 
assessed whether genotypes of VDR and ER, 
and their interaction, influenced changes in 
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bone mass in 108 European Caucasian post-
menopausal women with and without HRT 
over 3 years [105]. In that study, the VDR BsmI 
AA genotype was associated with larger spinal 
BMD increases using low HTR dose, whereas 
GG genotype was associated with larger BMD 
decrease in the placebo group. On the con-
trary, in a prospective randomized study of 429 
healthy early postmenopausal Danish women 
with and without HRT over 5 years, no associa-
tion was found between the BMD or change in 
BMD and either polymorphism studied (BsmI 
and FokI) [106].

Despite the contribution from these studies, 
it would appear logical to evaluate the efficacy 
of bisphosphonates at the genetic level in rela-
tion to their molecular mechanism of action. As 
discussed earlier, the nonamino‑bisphosphonates 
are metabolized to ATP analogs and are accu-
mulated in the cytosol of osteoclasts inducing 
cell death, while the amino‑bisphosphonates 
inhibited prenylation of small GTPases that 
are essentials for osteoclast activity and survival 
(inhibiting enzymatic activity in the intracellular 
mevalonate) [107]. The effects of amino‑bisphos-
phonates on the mevalonate pathway can explain 
not only their molecular mechanism of action, 
but also the different potency of the various 
amino‑biphosphonate compounds. However, the 
role that the target enzymes of the mevalonate 
pathway play in the variability of the response 
to therapy with amino‑bisphosphonates remains 
to be determined [108].

An example of this was reflected in a recent 
study in postmenopausal women, which evalu-
ated the association between the SNP rs2297480 
(A99C) in the FDPS gene (a key enzyme of the 
mevalonate pathway) and response after 2 years 
of treatment with bisphosphonates (ALN, oral 
and intravenous ibandronate). In that study, 
patients with CC genotype had a significantly 
poorer BMD response than the heterozygote or 
alternate homozygote [109]. 

Although these studies are preliminary, they 
strongly support the concept of pharmaco
genetics as a powerful complement to studies 
of existing and novel drugs. These studies are 
a rich area for investigating truly relevant phar-
macogenetic applications focused on bone‑active 
metabolic pathways.

Molecular biology tools for 
‘in‑house’ routine genotyping of 
SNPs related to risk fracture & BMD
As noted earlier, a large number of genes 
have been investigated as possible markers for 

osteoporosis and fracture risk. However, there 
are no conclusive results to determine which 
are linked specifically to clinically relevant 
genetic variations. Also, the information avail-
able is not well harmonized, in terms of genetic 
nomenclature, such that this information is of 
low practical applicability for translational 
research, specifically in a hospital environment. 

We have reviewed and screened the available 
information (see earlier) in order to describe 
in‑house common genotyping tools that sum-
marize some choices for analyzing specific SNPs 
that have been previously related with fractures 
and BMD. Table 2 shows pathways, gene locus, 
code SNPs, gene/near gene, SNP locus, amino 
acid position, forward primer, reverse primer, 
applied technique, restriction enzyme, sequenc-
ing and a respective source of reference ID assays 
for TaqMan® (Applied Biosystems, CA, USA) 
genotyping for each polymorphism. We con-
sider that this resource could simplify their use 
in clinical research. Also, we have summarized 
the SNP determination methodology that could 
be used as the routine tool of clinical research 
(PCR‑RFLP, PCR‑Sequencing and commercial 
allelic discrimination determination).

Thus, Table 2 shows selected genes and SNPs 
from analyzed studies, representative of more 
common pharmacogenetic assays performed 
during the past 10 years. Given continuing con-
troversy regarding the results of investigations 
into the genetics of osteoporosis [49] the main 
intention is to harmonize the existing data and 
to facilitate genotyping as part of translational 
clinical research, specifically for osteoporosis. 
Considerable work remains to be done in select-
ing the SNP according to the specific association 
being examined with respect to specific clinical 
issues. However, being aware of these advances 
will allow the more rapid implementation of new 
clinical genetic information in osteoporosis. 

Pharmacogenetics has evolved accord-
ing to the methodology available (allele spe-
cific amplification, PCR-RFLP, LightCycler® 
[Roche, Basel, Switzerland], Pyrosequencing 
[Biotage, Uppsala, Sweden], high-resolution 
melting curve analysis and microarrays tech-
niques) [110]. There have been major technologi-
cal changes from methods using unique SNP 
analysis of candidate genes to genome‑wide 
analysis. However, the question remains as to 
how to optimise their use through study design. 
Moreover, the identification of a clinically rel-
evant genetic variation in one single gene opens 
the way to examination of genes involved in 
linked pathways. 
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As the studies progress, it will be important to 
recognize and adjust for the effect and contribution 
of ethnicity, environmental factors, diet, sunlight 
exposure, comedication, clinical status, clinical 
data availablility and lifestyle. Over the next few 
years, complex diseases such as osteoporosis will be 
treated with new therapies, and improved under-
standing of genetic variations that effect response 
to treatment and/or risk of side effects will force 
diagnostic companies to develop new tests that 
allow for the tailoring of a patient’s treatment. 

Conclusion
Progress in analyzing the human genome in com-
bination with bioinformatic and technological 
advances have enabled better opportunities for 
understanding complex diseases with genetic 
determinants such as osteoporosis its fracture con-
sequences. The successful identification of putative 
genes associated with fracture risk, variability and 
its pharmacogenetics must be approached in large 
studies combining relevant data from individual 
clinical data collections. Most of the larger stud-
ies have been made with genome‑wide association 
data; however, it will be expected that practical 
large‑scale studies should be replicated and vali-
dated in patients across different populations, in 
order to discover those genes that really contribute 
significantly to interindividual clinical variation of 
fracture phenotypes and of treatment responses. 

Currently, despite most previous genetic osteo-
porosis studies having been focussed on SNPs 
analyses, there has been little or no harmon
ization of nomenclature. Hence, this article 
selectively summarizes emergent information 
that could be applied both now and as a model 
for future reporting of genetic information from 
fracture risk studies. 

There are intrinsic difficulties in evaluating the 
impact of human genetic variability and linking 
this information to physiological mechanisms 
and to clinically significant effects. There are 
concerns as to whether there are real associations 
within different populations, which highlights 
the need for replication and confirmation data in 
large datasets, including different ethnicities. In 
this regard, genetic data determination as part of 
routine direct hospital testing could be a strategic 
key point for success in this complex task. The 
present work highlights not only the important 
contribution of high-throughput methodology 
such as microarray platforms, but the routine 
techniques available for all molecular biology 
research and clinical laboratories, which manage 
large numbers of patient samples and hence can 
contribute towards obtaining valuable genetic Ta
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and pharmacogenetic data for replication and 
their clinical interpretation and reproducibility 
in large-scale international studies. 

At this time, the clinical challenge is to assess 
the validity and functionality of various SNPs 
with respect to osteoporosis risk. Clarification of 
these data are essential for convincing pharma
ceutical and biotechnology companies to join with 
the development of commercial tests suitable for 
routine diagnosis in pharmacogenomics.

When this point is reached, the pharmaco
genetic diagnostic information could help to 
reduce costs associated with outsourcing of lab-
oratory services and, consequently, encourage 
hospitals that have adequate basic infrastructure 
to carry out their own pharmacogenetic analy-
sis for better complementary drug monitoring 
assessment and contribute to better clinical 
outcomes in osteoporosis.

Future perspective
The main objective of pharmacogenetic research 
is to achieve confidence in the use of genetic tools 
for optimally selecting drugs for an individual and 
adjusting dose. This aim is currently hampered by 
limitations of global research. Well organized and 
controlled clinical trials are needed to demonstrate 
that pharmacogenetic interventions could really 
improve the pharmacotherapy. These clinical tri-
als are developed under restricted hospital super-
vision, and thus the expansion of resources for 
pharmacogenetic tools would be a significant and 
contributive step towards patient benefit.

With the information compiled in this 
article, it would be possible to more easily use 
genotype–phenotype analyses to expand the 

data relating SNPs, in a wide range of relevant 
genes, to osteoporosis phenotypes including drug 
responses, in order to maximize the health and 
welfare of patients with osteoporosis and fracture 
risk. The genotyping of osteoporosis patients can 
be performed with basic molecular biology tools, 
and once specific genotype–phenotype associa-
tions are established or confirmed, these could 
be a very useful tool optimal treatments in every 
subject, avoiding suboptimal long‑term treatment 
responses and/or adverse events.

The immediate challenge is to apply this 
methodology to completely ascertain and deter-
mine the extent to which these pathways or gene 
variants are present in our Caucasian population 
suffering OF versus a healthy control population 
and assess the degree of association that exists, as 
well as the extent to which they may influence 
therapeutic responses.
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Executive summary

�� General inter-relation of pharmacogenetics knowledge and analyses of the risk fracture profiles of different treatments in relation to 
human genetic variability will lead the way towards personalized osteoporosis follow-up.

�� Current knowledge of osteoporosis in genetics and pharmacogenetics has been obtained mainly through genome-wide association 
studies. However, there still are conflicting results and so there is a need for further functional validation assessment.

�� Polymorphisms of VDR, ESR, OPG/RANK/RANKL and COL1AI have been identified as the more common markers to study for establishing 
an association between osteoporosis fracture risk and BMD.

�� Harmonization of previous polymorphism nomenclature in important osteoporosis-related pathways will contribute to the facilitation of 
routine clinical studies for replication of results.

�� New putative pharmacogenomics and pharmacogenetic biomarkers related to osteoporosis and its personalized treatment will be in 
constant evolution owing to the discovery of new genetic data, treatments and management of pathology.
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