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Interaction between Testosterone and Growth
Hormone on Whole-Body Protein Anabolism Occurs in
the Liver
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Context: GH and testosterone both exert protein-anabolic effects and may act synergistically. Liver
and muscle are major sites of protein metabolism.

Objective: Our objective was to determine whether the site of GH and testosterone interaction on
protein metabolism is primarily hepatic or extrahepatic.

Design: In this open-label randomized crossover study, the impact on whole-body protein metab-
olism of oral (solely hepatic testosterone exposure) and transdermal (systemic testosterone expo-
sure) testosterone replacement in the presence or absence of GH was compared.

Patients and Intervention: Eleven hypopituitary men with GH and testosterone deficiency were
randomized to 2-wk treatments with transdermal testosterone (10 mg) or oral testosterone (40
mg), with or without GH replacement (0.6 mg/d). The dose of testosterone administered orally
achieves physiological portal testosterone concentrations without spillover into the systemic
circulation.

Main Outcome Measures: Whole-body leucine turnover was measured, from which leucine rate of
appearance (LRa), an index of protein breakdown, and leucine oxidation (Lox), a measure of
irreversible protein loss, were estimated at the end of each treatment.

Results: In the absence of GH, neither transdermal nor oral testosterone affected LRa or Lox. GH
therapy significantly increased LRa, an effect equally reduced by transdermal and oral testosterone
administration. GH replacement alone did not significantly change Lox, whereas addition of tes-
tosterone treatment reduced Lox, with the effect not significantly different between transdermal
and oral testosterone.

Conclusions: In the doses used, testosterone stimulates protein anabolism by reducing protein
breakdown and oxidation only in the presence of GH. Because the net effect on protein metabolism
during GH therapy is not different between systemic and solely hepatic testosterone administra-
tion, we conclude that the liver is the primary site of this hormonal interaction. (J Clin Endocrinol
Metab 96: 1060-1067, 2011)
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n adults with GH deficiency, muscle mass is reduced
with these differences reversed upon GH replacement
(1-3). Androgen deficiency also results in a reduction in
muscle mass, which is normalized by testosterone replace-
ment (4, 5). Thus, GH and testosterone both exert muscle-
anabolic effect and may act synergistically. Evidence
shows that both hormones are necessary to exert an op-
timal effect. This is exemplified in GH-deficient men in
whom lean body mass remains subnormal even after ad-
equate androgen replacement (1). Linear growth in GH-
deficient children receiving GH replacement is further
stimulated by androgen treatment (6), and for full andro-
gen growth-promoting effect, GH replacement is required
(7). This observation suggests that the anabolic effect of
androgens may depend on the presence of GH.

In prepubertal boys with GH deficiency, testosterone
and GH replacement results in a greater stimulation of
whole-body protein synthesis than testosterone treatment
alone (8). How GH and testosterone interact to regulate
protein metabolism in adult life is poorly understood. We
recently reported that in hypopituitary men, both GH and
testosterone promote protein anabolism, this effect being
enhanced with combined treatment (9). Thus, testoster-
one and GH exert independent and additive effects in reg-
ulating protein metabolism. However, the primary site of
GH and testosterone interaction is unknown.

Liver and muscle are major sites where protein metab-
olismis regulated. We aimed to determine whether the site
of GH and testosterone interaction on protein metabolism
is primarily hepatic or extrahepatic. Oral delivery of tes-
tosterone exposes the liver to high portal levels of testos-
terone, which undergoes first-pass hepatic metabolism
reducing or preventing the appearance of additional tes-
tosterone in the systemic circulation. We compared the
impact on whole-body protein metabolism of testosterone
administered via oral route (at doses used resulting in
solely hepatic testosterone exposure) with transdermal
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testosterone replacement (systemic testosterone exposure)
in the presence or absence of GH.

Subjects and Methods

Subjects

Eleven hypopituitary men with GH and androgen deficiency
were recruited from the Endocrine Outpatient Clinic, St. Vin-
cent’s Hospital, Sydney, Australia. Study participant clinical
characteristics are shown in Table 1. GH deficiency was con-
firmed with insulin tolerance test by peak GH response to insu-
lin-induced hypoglycemia of less than 3 ng/ml (10). Secondary
hypogonadism was confirmed by serum testosterone of less than
6 nmol/liter accompanied by low blood LH levels. The duration
of hypopituitarism was at least 2 yr. Previously and throughout
the study, participants received standard thyroid hormone and
cortisol replacement for thyroid and adrenal deficiencies, respec-
tively, with the doses unchanged throughout the study. Study
participants discontinued testosterone replacement before com-
mencement of the study for at least 2 wk for transdermal tes-
tosterone, 8 wk for im testosterone esters, and 6 months for
depot testosterone preparations. All participants were instructed
to follow their usual diet and physical activity as well as con-
tinuing their usual medications or supplements throughout the
study.

The Human Research Ethics Committee of St. Vincent’s Hos-
pital approved the study. The study was conducted in accordance
with the principles of the Declaration of Helsinki. All partici-
pants gave written informed consent. The study was registered
with the Australian and New Zealand Clinical Trials Registry
(ACTRN12605000482662).

Study design

This was an open-label, randomized two-period crossover
study (Fig. 1). Participants were entered into the study after pro-
viding informed consent and sufficient washout of previous tes-
tosterone treatment. They were randomized to transdermal or
oral testosterone treatments, each for 2 wk with and without GH
replacement. The washout period in between the oral and trans-
dermal testosterone treatments was 2 wk. Study participants
underwent GH therapy for 3 months before commencement of

TABLE 1. Characteristics of hypogonadal GH-deficient subjects

Subject no. Age (yr) BMI (kg/m?) Diagnosis Treatment Hormone replacement

1 36 26.6 Craniopharyngioma S AT G

2 28 35.8 Idiopathic hypopituitarism Nil AT, G,D
3 54 30.7 Pituitary macroadenoma S AT, G,

4 52 29.8 Pituitary macroadenoma S ATG

5 20 28.5 Craniopharyngioma S G

6 26 20.6 Pituitary macroadenoma S AT G

7 73 26.2 Pituitary macroadenoma S AT G

8 73 26.3 Pituitary macroadenoma S AT G

9 49 27.8 Hypopituitarism post TBI Nil AT G,D
10 47 36.4 Hypopituitarism post cranial irradiation Nil ATG

11 53 30.0 Pituitary macroadenoma S, X AT G,D

A, Adrenal replacement; BMI, body mass index; D, deamino-8-arginine vasopressin; G, gonadal replacement; S, surgery; T, thyroid replacement;

TBI, traumatic brain injury; X, radiotherapy.
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FIG. 1. Study design. Hypopituitary men were randomized to
transdermal and oral testosterone treatments, each for 2 wk with or
without GH replacement. The washout period in between the
testosterone treatments was 2 wk. The GH sequence was randomized,
and the run-in period for the GH therapy was 3 months. If the
randomization sequence was such that GH therapy was started first,
there was a period of GH washout for 4 wk before treatment with
transdermal and oral testosterone was recommenced. The dose of
transdermal testosterone was 10 mg/d, oral crystalline testosterone 40
mag/d, and GH 0.06 mg/d. The dose of oral testosterone was designed
to achieve physiological portal testosterone concentrations without
spillover into the systemic circulation. tdT, Transdermal testosterone;
oT, oral testosterone.

testosterone treatment to achieve stable GH metabolic effects
(Fig. 1).If the randomization sequence was such that GH therapy
was started first, after completion of the GH phase, there was a
period of GH washout for 4 wk before treatment with transder-
mal and oral testosterone was recommenced. The dose of trans-
dermal testosterone (Androderm patches; Mayne Pharma Ltd.,
Melbourne, Australia) was 10 mg/d, and the dose of oral crys-
talline testosterone was 40 mg/d. Oral testosterone was prepared
by Fresh Therapeutics (Sydney, Australia) as capsules filled with
crystalline testosterone USP without excipients. The daily 40-mg
dose of crystalline testosterone was divided into three doses
taken every 8 h to achieve more constant hepatic exposure to
testosterone. The dose of oral testosterone was selected based on
our previous work in hypogonadal men where 40 mg/d of oral
crystalline testosterone was the highest dose that did not increase
systemic testosterone levels and did not reduce blood levels of
SHBG, confirming the liver to be exposed to physiological tes-
tosterone levels through portal circulation without any spillover
into the systemic circulation (11). GH (Humatrope; Eli Lilly Aus-
tralia, West Ryde, Australia) was injected scin a dose of 0.6 mg/d
in the evening.

The effects of GH and testosterone on the following variables
were studied: 1) whole-body leucine rate of appearance (LRa), an
index of protein breakdown; 2) leucine oxidation (Lox), an index
of oxidative loss of protein; and 3) blood levels of IGF-I, testos-
terone, and SHBG.

Participants were studied after an overnight fast in the early
morning in the Clinical Research Facility, Garvan Institute of
Medical Research. Studies were undertaken at baseline and at the
end of each treatment period. At each visit, study blood samples
were collected and placed on ice, and plasma was separated and
stored at —80 C until analysis.

Methods

Protein turnover

Whole-body protein metabolism was measured using the leu-
cine turnover technique. The method is based on the principle of
steady-state kinetics in which the rates of appearance of substrate
equals its rate of disposal. For leucine, there are two pathways of

20% &7 CO; Leucine oxidation

Oxidation (Lox)

FIG. 2. Whole-body protein metabolism. In postabsorptive state,
about 20% of amino acids derived from proteolysis are lost irreversibly
through oxidation, and the remaining 80% are reincorporated back
into protein. Leucine turnover technique is based on the principle of
steady-state kinetics in which the LRa, an index of protein breakdown,
equals its rate of disposal (Lox), an index of irreversible loss of protein,
and leucine incorporation into protein.

disposal: oxidation and reincorporation into protein (Fig. 2).
The fractional partitioning between these two pathways of dis-
posal is determined from the fraction of infused isotope that
appears in breath. LRa and Lox were calculated as previously
described (12). a-Ketoisocaproic acid (KIC) is formed when leu-
cine undergoes transamination and is used as a surrogate marker
of leucine as it more accurately reflects the intracellular environ-
ment (13).

After an overnight fast, a 0.104-mg/kg priming dose of
NaH'?>COj; was followed by a primed constant 3-h infusion of
1-[*3*C]leucine (prime 0.5 mg/kg, infusion 0.5 mg/kg-h), as pre-
viously described (14, 15). NaH'>CO, and 1-[**C]leucine were
obtained from Cambridge Isotope Laboratories (Woburn, MA).
On each visit, blood and breath samples were collected before
(—10 and 0 min) and during (140, 160, and 180 min) the leucine
infusion. Blood was placed on ice, and plasma was separated and
stored at —80 C. KIC was extracted from plasma as described by
Nissen et al. (16). Plasma KIC enrichment with 3C was mea-
sured by gas chromatography mass spectrometry (MSD 5971A,
model 5890; Hewlett-Packard Co., Palo Alto, CA). CO, enrich-
ment with '*C in breath samples was measured at University of
Surrey (Surrey, UK) on a Delta Plus XP isotope ratio mass spec-
trometer fitted with a Gas Bench II inlet system (Thermo Fisher
Scientific, Hemel Hempstead, UK). The coefficients of variation
(CV) for LRa and Lox at the Garvan Institute are 3.5 and 6.1%,
respectively.

Indirect calorimetry

For estimation of Lox, carbon dioxide production was mea-
sured by indirect calorimetry. This involved using an open-cir-
cuit ventilated-hood system (Deltatrac Metabolic Monitor; Da-
tex Instrumentarium Corp., Helsinki, Finland), calibrated
against standard gases before each study. Participants were
rested ona bed for atleast 30 min. A clear plastichood was placed
loosely over the subject’s head for a 20-min period. Measure-
ments were collected during two 20-min periods and averaged.

Assays
All samples for any individual were measured in the same
assay run for each analyte. Serum IGF-I levels were measured by

RIA after acid ethanol extraction as previously described (9, 15,
17). The CV for IGF-I were 8.3% at 14.7 nmol/liter and 7.4% at
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28.6 nmol/liter. Serum testosterone, SHBG, and prostate-spe-
cific antigen (PSA) were measured by RIA using commercial as-
says (Immulite 2000; Siemens Medical Solution Diagnostics, Los
Angeles, CA). The lowest limit of detection for testosterone assay
was 0.7 nmol/liter. The interassay CV for testosterone at 3.6 and
23 nmol/liter were 9.3 and 9.0%, respectively. The CV for SHBG
at 5.3 and 86.2 nmol/liter were 5.0 and 7.5%, respectively. The
CV for PSA were 7.6% at 0.33 ng/ml and 5.0% at 10 ng/ml.

Statistical analysis

Treatment effects of GH, transdermal and oral testosterone
alone, and combination effects were assessed using repeated-
measures ANOVA followed by paired ¢ tests with Bonferroni’s
correction. Because there were no carryover and sequence effects
detected by ANOVA, data were pooled together for the treat-
ment-effect analysis. Results are expressed as mean with sem, and
a P value < 0.05 was considered to be significant. Statistical
analysis was undertaken using the statistical software package
Statview version 4.5 PPC (Abacus Concepts, Inc., Berkeley, CA).

Results

The mean age of the participants was 46.4 * 5.3 yr, and
mean body mass index was 29 = 1.3 kg/m?. PSA levels for
all participants ranged from 0.05-4.4 ug/liter. The mean
weight did not significantly change throughout the study.

Testosterone

In the absence of GH treatment, transdermal testoster-
one administration increased the mean testosterone level
significantly (P < 0.001; Table 2) compared with baseline,
reaching the adult normal range (12-36 nmol/liter). On
GH therapy, transdermal testosterone also significantly
increased circulating testosterone levels (P < 0.001; Table
2), whereas oral testosterone did not significantly change
the mean testosterone levels compared with baseline (Ta-
ble 2). Blood testosterone levels on transdermal adminis-
tration were significantly higher than on oral administra-
tion, regardless of GH treatment (P < 0.01).
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IGF-I levels

In the absence of GH, neither transdermal nor oral tes-
tosterone administration significantly changed IGF-I lev-
els (Table 2). During GH therapy, the mean IGF-I levels
significantly increased compared with baseline (P <
0.0001). GH coadministration with transdermal and oral
testosterone significantly increased circulating IGF-1 com-
pared with baseline (P < 0.0001; Table 2). During GH
therapy, IGF-I levels significantly (P < 0.05) increased
with oral but not transdermal testosterone treatment com-
pared with GH therapy alone. The changes in circulating
IGF-I levels between oral and transdermal testosterone

during GH therapy but were not significantly different
(Table 2).

SHBG levels

In the absence of GH, mean SHBG levels on trans-
dermal testosterone administration were significantly
lower compared with baseline (P < 0.01; Table 2),
whereas on oral testosterone administration, mean
SHBG levels did not significantly differ from baseline.
When compared with baseline, mean SHBG levels did
not significantly change during GH therapy alone or in

combination with either transdermal or oral testoster-
one (Table 2).

Leucine rate of appearance

In the absence of GH, neither transdermal nor oral tes-
tosterone significantly affected LRa (Fig. 3 and Table 2).
GH therapy significantly (P < 0.01) increased LRa by
15.2 = 3.9% when compared with baseline. During GH
therapy, the addition of transdermal (P < 0.01) and oral
testosterone (P < 0.035) significantly reduced LRa com-
pared with GH therapy alone. The effect on LRa between
transdermal and oral testosterone administration was not
significantly different (Fig. 3 and Table 2).

TABLE 2. Treatment effects on testosterone, IGF-I, SHBG levels, and protein turnover measures

No GH GH
Testosterone Testosterone
Baseline Td Oral Baseline Td Oral

T (nmol/liter) 28*+0.6 19.5 + 3.4 43 +09 35+0.5 19 + 3.42P 3.7+0.6
IGF-I (nmol/liter) 15.6 = 2.1 145+ 15 143 + 15 40.7 = 3.99 39 + 37 47.2 + 4,72
SHBG (nmol/liter) 23+ 3 19.8 + 2.67 22.2*+39 23.6 =33 214 +28 21.8 =33
LRa (mwmol/min) 1514 =119 1589 + 16 159.2 + 13.2 173.6 = 147 161.6 = 11.5° 158.2 +9.7°
Lox (umol/min) 37.6 4.1 34.7 = 3.7 369 +5.2 38+ 4.6 32.7 = 3.2%b 32.7 = 3.12b
Lox (% from LRa) 247 =15 219+13 22719 21.7 = 1.87 20.1 = 1.19 20.8 = 1.67

Data are presented as mean = sem. T, Testosterone; Td, transdermal.

2 P < 0.05 vs. nil (baseline, no GH).
b p < 0.05 vs. GH therapy (baseline, GH).
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FIG. 3. Effects of testosterone and GH therapy used alone and in
combination on whole-body protein turnover. A, LRa, a measure of
protein breakdown; B, net Lox, a measure of irreversible loss of
protein; C, proportion of leucine oxidized, expressed as percentage
from LRa. Data are expressed as means = sem. P < 0.05: *, vs. no
treatment; #, vs. GH administration. td, Transdermal.

Net Lox

In the absence of GH, when compared with baseline,
neither transdermal nor oral testosterone significantly af-
fected Lox (Fig. 3 and Table 2). Lox did not significantly
change during GH therapy. During the GH therapy phase,
the addition of transdermal testosterone significantly
reduced Lox by 11.1 = 5.2% compared with baseline
(P < 0.05). There was also a significant reduction of
10.7 = 4.3% compared with GH therapy alone (P < 0.05).
During GH therapy, the addition of oral testosterone sig-
nificantly reduced Lox by 11.3 = 3.5% compared with
baseline. There was also a significant reduction of
10.2 = 4.7% compared with GH therapy alone (P <
0.05; Fig. 3 and Table 2). The effect on Lox was not
significantly different between transdermal and oral
testosterone administration (Fig. 3 and Table 2).

Hepatic Interaction of Testosterone and Growth Hormone
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The proportion of leucine oxidized

We next analyzed the data to determine which inter-
vention induced a significant reduction in leucine oxidized
as a proportion of LRa (percent Lox/LRa), because this
proportion is an inverse measure of protein synthesis.
ANOVA revealed that the percent Lox/LRa was not sig-
nificantly affected by testosterone treatment alone. This
proportion was significantly (P < 0.05) reduced by GH
treatment and unaffected by cotreatment with either oral
or transdermal testosterone (Fig. 3 and Table 2). The
mechanisms by which GH and combined GH and testos-
terone treatment reduced the proportion of leucine oxi-
dized were different. In the case of GH, the reduction oc-
curred secondary to an increase in LRa with no change in
Lox. The addition of testosterone prevented the GH-in-
duced increase in LRa while simultaneously reducing Lox,
resulting in a net lowering of the proportion of leucine
oxidized (Fig. 3 and Table 2).

Thus, GH and testosterone affect different components
of leucine turnover, with an effect of testosterone evident
only in the presence of GH.

Discussion

We aimed to determine the site of GH and testosterone
interaction in the regulation of whole-body protein me-
tabolism. We employed oral and transdermal testosterone
administration to deduce whether the interaction oc-
curred primarily in the liver or in extrahepatic tissues. The
testosterone regimen increased systemic androgen expo-
sure via the transdermal route or solely hepatic exposure
via the oral route (11). In the absence of GH, neither sys-
temic nor hepatic testosterone exposure significantly in-
fluenced LRa and Lox. In the presence of GH, both sys-
temic and hepatic testosterone administration reduced the
LRa, an index of protein breakdown, and the rate of Lox,
an index of irreversible loss of protein. There was no sig-
nificant difference between transdermal and oral testos-
terone administration on protein metabolism during GH
therapy. In the doses used, neither GH nor testosterone
alone reduced Lox, a measure of irreversible loss of pro-
tein. Only when testosterone was combined with GH was
there a measurable net beneficial anabolic effect.

The liver is a major site of protein metabolism. Its con-
tribution to whole-body protein synthesis approximates
that of muscle, whereas its protein oxidation rate is about
half that of muscle (18). In the postabsorptive state, the
rate of protein degradation exceeds that of synthesis in
muscle but notin the liver, indicating that during substrate
deprivation, amino acids are supplied to the liver by skel-
etal muscle (18). Thus, it is a critical site for regulation of
whole-body protein metabolism. This study provides
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strong evidence that GH and testosterone interact in the
liver to regulate whole-body protein metabolism.

Our study shows that GH and testosterone act on dif-
ferent components of protein metabolism. In the postab-
sorptive state, about 20% of amino acids derived from
proteolysis are lost irreversibly through oxidation (Fig. 2).
The amount of leucine oxidized is dependent on 1) the
LRa, an index of protein breakdown, and 2) the parti-
tioning of leucine to oxidation pathway, representing a
proportion of leucine oxidized. GH treatment alone re-
duced the proportion of leucine oxidized while stimulat-
ing the rate of leucine turnover, which resulted in no net
change in the amount of leucine oxidized. Testosterone
alone did not influence the proportion of leucine oxidized
or the rate of leucine turnover. However, testosterone ab-
rogated the stimulation of leucine turnover but did not
affect the reduction in proportion of leucine oxidized in-
duced by GH, resulting in a net reduction in the amount of
leucine oxidized. Because the reduction in Lox results in a
reduction in irreversible loss of protein, this represents a
net anabolic effect arising from a partitioning of amino
acid utilization toward protein synthesis. Our data show
that GH and testosterone act in a complementary way on
different components of protein metabolism in exerting
net anabolic effect.

We observed that GH enhanced leucine turnover while
increasing the fraction that is recycled to protein synthesis
after breakdown. We did not observe a significant reduc-
tion in Lox by GH therapy alone, as reported in some
studies previously (3, 19-21). This apparent discrepancy
may reflect a time-dependent effect of GH on the dynamics
of protein metabolism. In the early weeks of GH replace-
ment, Lox is reduced together with an increase in whole-
body leucine turnover (3,19-21). After 3 months of GH
replacement, an effect on Lox is lost, but the increase in
leucine turnover with recycling of leucine for protein
synthesis is maintained reflecting a new steady state (3).
Because the GH effect on protein metabolism is time
dependent, we designed the study so that the effects of
testosterone could be studied against a stable baseline of
GH therapy.

The design does not allow us to determine whether the
site of GH action is extrahepatic, hepatic, or both. Recy-
cling of amino acids may occur locally in muscle and other
tissues or occur at a systematic level involving a central
role of the liver in recycling of nitrogen to and from pe-
ripheral tissues and disposal via the urea cycle. Studies in
rodents have reported that GH reduces hepatic nitrogen
clearance by inhibiting urea synthesis, which results in an
increase in nitrogen content of liver and muscle (22). Urea
synthesis and hepatic nitrogen clearance are suppressed by
GH administration in healthy men and in GH-deficient
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TABLE 3. Effects of GH alone and combined with
testosterone on whole-body protein metabolism and the
proposed sites of interaction

Protein Interaction

T Breakdown Oxidation Hepatic Extrahepatic

GH ) PN
GH Oral ) | vV —
GH Td ! ) vV vV

GH therapy alone increased protein breakdown. Addition of oral
testosterone reduced protein breakdown and oxidation. Because

oral testosterone exerts solely hepatic effect, the site of GH and
testosterone interaction is liver. Addition of transdermal testosterone
also reduced protein breakdown and oxidation. Because transdermal
testosterone exposes liver and extrahepatic sites to testosterone, if the
interaction site would have been primarily extrahepatic, the effect on
protein metabolism would differ between oral and transdermal
testosterone administration. However, this was not so. Therefore, the
site of GH and testosterone interaction is liver. T, Testosterone; Td,
transdermal; 1, increase; | , decrease; <>, no change; —, no
interaction; \/ , site of GH and testosterone interaction.

patients (23-25). Because urea formation represents an
irreversible pathway for nitrogen loss, the data suggest
that GH enhances the recycling of nitrogen for reuse in
protein synthesis. It is conceivable that the partitioning of
leucine toward protein synthesis by GH, as observed from
the leucine turnover study, may in part be represented by
a reduction in nitrogen clearance in the liver.

We showed that, regardless of the route of administra-
tion, in the presence of GH, testosterone reduces leucine
turnover (Table 3). Itis unlikely that testosterone inhibited
the peripheral breakdown of protein induced by GH. Had
this been the case, then transdermal and not oral testos-
terone would have modified the process. However, this
was not observed. These data may indicate a dynamic
process of proteolysis occurring in the liver under GH
stimulation that is attenuated by testosterone. What this
means physiologically is unknown. Turnover studies in-
volving the tracking of liver-specific proteins or transhe-
patic arteriovenous cannulation studies are required to
elucidate the significance of the present findings.

Our study indicates that testosterone treatment alone
did not affect whole-body protein metabolism. However,
we cannot exclude the possibility that testosterone may
have exerted a significant effect had the dosage been
higher. Testosterone exerts dose-dependent effect on lean
body mass (26). We previously showed that in the absence
of GH, administration of testosterone by the im route in-
hibits irreversible loss of protein (9), an observation at
odds with the present findings. It is likely that the phar-
macological levels of testosterone achieved after im injec-
tion imparted a greater effect on protein metabolism. In
the present study, the mode and method of testosterone
administration resulted in physiological concentrations in
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blood (11). Our results also indicate that a whole-body
anabolic effect can be achieved by using a physiological
dose of testosterone administered via oral route free of any
systemic androgenic effects. This finding is of potential
therapeutic benefit because systemic testosterone admin-
istration is associated with an increased risk of cardiovas-
cular adverse events and androgenic effects in women,
both of which can be avoided by oral administration of a
dose thatimparts physiological hepatic effects (27). There-
fore, testosterone administration via oral route may open
new treatment strategies for frail elderly. Further research
is required to provide a definite conclusion on the thera-
peutic implications of our findings.

In summary, in the absence of GH, neither transdermal
nor oral testosterone exposure significantly influenced
LRa and Lox. GH therapy significantly stimulated whole-
body LRa, an effect abrogated by the addition of testos-
terone regardless of the route of administration. Net Lox
was reduced by combined administration of GH and tes-
tosterone but not by either hormone alone.

We conclude that in the doses used, only in the presence
of GH, testosterone stimulates anabolism by reducing pro-
tein breakdown and oxidation. Because the net effect on
protein metabolism during GH therapy is not different
between systemic and solely hepatic testosterone admin-
istration, the liver is the primary site of interaction be-
tween these two hormones. In the GH-sufficient state, oral
testosterone administration of a physiological dose can
induce a whole-body anabolic effect without systemic an-
drogenic effects. These findings have potential benefit for
treatment of frailty in both men and women.
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