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Abstract
Aims/hypothesis Islet transplantation is a potential thera-
peutic option for type 1 diabetes. However, the need for
multiple donors per patient and heavy immunosuppression
of the recipients limit its use. The goal of this study was to
test whether the gene encoding activating transcription
factor 3 (ATF3), a stress-inducible pro-apoptotic gene,
plays a role in graft rejection in islet transplantation.
Methods We compared wild-type (WT) and Atf3 knockout
(KO) islets in vitro using stress paradigms relevant to islet
transplantation: isolation, inflammation and hypoxia. We
also compared the WT and KO islets in vivo using a
syngeneic mouse transplantation model.
Results ATF3 was induced in all three stress paradigms and

played a deleterious role in islet survival, as evidenced by
the lower viability of WT islets compared with KO islets.
ATF3 upregulated various downstream target genes in a
stress-dependent manner. These target genes can be
classified into two functional groups: (1) apoptosis (Noxa
[also known as Pmaip1] and Bnip3), and (2) immunomo-
dulation (Tnfα [also known as Tnf], Il-1β [also known as
Il1b], Il-6 [also known as Il6] and Ccl2 [also known as
Mcp-1]). In vivo, Atf3 KO islets performed better than WT
islets after transplantation, as evidenced by better glucose
homeostasis in the recipients and the reduction of the
following variables in the KO grafts: caspase 3 activation,
macrophage infiltration and expression of the above
apoptotic and immunomodulatory genes.
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Conclusions/interpretation ATF3 plays a role in islet
graft rejection by contributing to islet cell death and
inflammatory responses at the graft sites. Silencing the
ATF3 gene may provide therapeutic benefits in islet
transplantation.

Keywords ATF3 . Cell death . Inflammation . Islet
transplantation . Primary non-function . Stress response .

Transcription factor

Abbreviations
ATF3 Activating transcription factor 3
CCL2 Chemokine (C–C motif) ligand 2
ChIP Chromatin immunoprecipitation
βgal β-Galactosidase
HIF1-α Hypoxia-inducible factor 1 alpha subunit
KO Knockout
PI Propidium iodide
POD Postoperative day
ROI Region of interest
STZ Streptozotocin
TSS Transcriptional start site
WT Wild-type

Introduction

Since the pioneering work demonstrating that transplanta-
tion of islets of Langerhans into diabetic rodents could
normalise their blood glucose levels, islet transplantation
has been proposed to be a potential treatment for type 1
diabetes [1–7]. Recent advances in human islet transplan-
tation [1, 8] further strengthened this view. However, major
limitations prevent islet transplantation from becoming a
widespread clinical reality: (1) the requirement for large
numbers of islets per patient severely reduces the number of
potential recipients, and (2) the need for heavy immuno-
suppression significantly affects the paediatric population
of patients because of their vulnerability to long-term
immunosuppression. Strategies that can overcome these
limitations will greatly enhance the therapeutic potential of
islet transplantation.

A major reason for islet loss during transplantation is
the apoptotic death of islet cells, an event caused by
multiple factors that can be classified into two main
groups. The first consists of those leading to ‘primary
non-function’, a term referring to islet dysfunction and
loss for reasons other than specific immune rejection by
the recipients. Factors causing primary non-function
include deleterious conditions that islets face during
isolation and the hostile environment in the recipients
such as the hyperglycaemic milieu of the hosts and the

non-specific inflammatory attack by the host innate
immunity, which involves macrophages and dendritic
cells [9–17]. The second group of factors causing islet
death in transplantation is the specific immune attacks by
the host adaptive immunity, which involves T and B
lymphocytes.

Although both primary non-function and specific immune
attack contribute to graft failure, primary non-function is
thought to be the main reason for islet failure in the early
transplantation stage and for the requirement of a large
number of islets (two or more pancreases per patient) to
achieve euglycaemia (see Wu et al. [18] for references).
Despite its importance, primary non-function is not well
understood at the molecular level. In this study, we
investigated the potential roles of the gene encoding
activating transcription factor 3 (ATF3), a stress-inducible
pro-apoptotic gene, in primary non-function. Atf3 encodes a
member of the ATF/CREB family of transcription factors
that share the basic region/leucine zipper DNA binding
motif and bind to the ATF/CRE consensus sequence
TGACGTCA (see reviews by Hai et al. [19, 20]).
Overwhelming evidence indicates that the expression of
Atf3 is upregulated by a variety of signals, including some
seemingly unrelated signals such as cytokines, nutrient
deprivation, serum stimulation and calcium signalling (see
review by Hai [21]). Given the broad spectrum of the
stimuli that can induce ATF3, it appears that Atf3 is an
‘adaptive-response’ gene used by the cells to adapt to extra-
and/or intracellular changes. Borrowing a concept from the
network theory, we suggest that ATF3 can be viewed as a
hub in the biological networks to respond to signals
perturbing homeostasis. Functionally, ATF3 is pro-
apoptotic in pancreatic beta cells. Previously, we demon-
strated that knockout (KO) or knockdown of Atf3 protects
islets or beta cells from stress-induced death [22, 23].

The deleterious effect of ATF3 in beta cells, combined
with its general inducibility, prompted us to hypothesise
that ATF3 is induced by signals encountered by the islets
during transplantation, and that deletion of ATF3 would
protect islets in a syngeneic transplantation model. In this
model, donor mice have the same genetic background as
recipient mice; thus the islets would not invoke the adaptive
immune response, allowing us to investigate the roles of
ATF3 in primary non-function. In this report, we present
evidence supporting our hypothesis. We also present
evidence that ATF3 upregulates the production of several
pro-inflammatory cytokines and chemokine (C–C motif)
ligand 2 (CCL2), a potent macrophage recruitment factor
[24]. These results suggest that ATF3 contributes not only
to apoptosis but also to an inflamed state of the islet grafts.
Considering the deleterious effects of apoptosis and
inflammation, our findings have significant implications
for islet transplantation.
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Methods

Cell culture and treatments INS-1 and INS-r3 cells were
grown as previously described [25]. Treatments were the
following: IL-1β (5 ng/ml), TNF-α (30 ng/ml), IFN-γ
(125 ng/ml) and hypoxia (1% O2, 5% CO2, 94% N2).

Animals and adenoviruses Wild-type (WT) and Atf3 KO
mice were detailed previously [22]. Animal experiments
followed National Institutes of Health (NIH) guidelines
(NIH publication no. 85-23) and were approved by the
Ohio State University Laboratory Animal Resources.
Adenoviruses were described previously [23].

Islet isolation and transplantation Islets isolated from age-
matched male mice (12–20 weeks, C57BL/6 background)
as previously described [23] were incubated with RPMI
containing 10% (vol./vol.) FBS (250 islets in 3 ml).
Transplantations beneath the kidney capsule were carried
out as previously described [26, 27] using 250–400 (as
specified) freshly isolated islets.

Graft recovery Two days after transplantation, the graft was
excised, placed into Trizol, vortexed (2 min) and rocked
(overnight, 4°C) prior to RNA extraction. For controls,
similar-sized kidney capsules were excised from mice
transplanted with PBS.

qRT-PCR, chromatin immunoprecipitation (ChIP) assay,
immunoblotting and immunohistochemistry All procedures
were as described before [23, 28], using PCR primers and
antibodies listed in the Electronic supplementary material
[ESM].

Cell viability analysis Islets were stained with propidium
iodide (PI) (1 μg/ml) and Hoechst 33258 (2 μg/ml)
followed by epifluorescence analyses using the NIH ImageJ
Software as detailed in ESM Fig. 1.

Cell fractionation INS cells were permeabilised with
0.025% digitonin buffer (20 mmol/l HEPES, pH 7.5,
100 mmol/l KCl, 2.5 mmol/l MgCl2, 250 mmol/l sucrose)
on ice for 20 min, tested by Trypan Blue to verify
permeability, and centrifuged (12,000×g, 20 min) to obtain
the cytosolic fraction (supernatant fraction).

Glucose tolerance tests and insulin ELISA Glucose tolerance
testing was as described previously [23] and insulin was
measured by ELISA (Linco, St Charles, MO, USA) using
tail or facial vein bleed.

Boyden chamber macrophage migration assay Bone mar-
row cells were isolated from the femur and differentiated into

macrophages as described before [29]. Islet-conditioned
medium was made by incubating 200 islets in 0.5 ml
medium for 48 h. The cell migration assay was carried out
as described previously [30] using 8×105 macrophages.

Semi-quantification of immunohistochemistry signals For
caspase 3 activation, the NIH ImageJ program was used as
follows: (1) delineate the islets region of interest (ROI)
manually using the polygon selection tool; (2) threshold the
image and convert to black and white; (3) count the positive
pixels; (4) calculate the ratio of the signal pixels to the total
pixels in the ROI. For macrophage recruitment, the ROI is
the area within the kidney subcapsule that is not occupied
by islets (see ESM Fig. 4).

Statistics All quantitative data are expressed as means±SEM,
and comparisons made by Student’s t test unless otherwise
indicated.

Results

The effects of Atf3 KO in islet isolation stress We examined
whether Atf3 is expressed in the islets after isolation.
Figure 1a shows that the level of Atf3 mRNA was the
highest immediately after isolation and declined at 12–24 h.
Figure 1b is a representative immunoblot, confirming the
induction of ATF3 in the WT but not KO islets. To test the
potential significance of Atf3 expression, we compared WT
and KO islets for their viability using PI coupled with
Hoechst stain. Viable cells are not permeable to PI and will
only be stained by Hoechst; however, dead cells will be
stained by both PI and Hoechst. Figure 1c shows a
representative picture with more PI stain in the WT than
in the KO islets, indicating that ATF3 enhances cell death.
Data quantification using the NIH ImageJ program (detailed
in ESM Fig. 1) showed a higher percentage of PI-positive
pixels in the WT than in the KO islets (Fig. 1d).
Interestingly, both the WT and KO islets showed a decline
in cell death over time, but the WT islets showed a slight
rebound at the 48 h time point, paralleling an increase in
ATF3 production at this time point.

Since ATF3 is a transcription factor, it most likely exerts
its action, at least in part, by regulating downstream genes.
We thus examined the expression of various candidate
genes by qRT-PCR. We focused on two categories of genes:
pro-apoptotic genes and genes involved in immunomodu-
lation. The reason for testing immunomodulating genes is
that, upon transplantation, the grafts induce immune
responses from the hosts. Their ability to modulate the
host responses greatly impacts the survival of the grafts.
Although limited in scope, our screen showed higher
expression of the following genes in the WT than in the
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KO islets (Fig. 1e–j): Noxa (also known as Pmaip1) and
Bnip3 (pro-apoptotic genes), and Tnfα (also known as
Tnf), Il-1β (also known as Il1b), Il-6 (also known as Il6)
and Ccl2 (immunomodulating genes). The differences
were statistically significant (p<0.05) except for Bnip3
and Ccl2, which showed a consistent trend in three
independent experiments but the p value was >0.05 (0.13
for Bnip3 and 0.08 for Ccl2). We also examined Csf1, a
macrophage recruitment factor, and Tf, a factor whose
expression contributes to islet loss in transplantation [31].
No difference in Csf1 expression was observed between
the WT and KO islets (Fig. 1k), and the difference for Tf
was subtle (1.6 fold higher in WT, p<0.03). These results
indicate that ATF3 contributes to the increased expression
of certain pro-apoptotic and pro-inflammatory genes and
would thus enhance islet apoptosis and inflammation. The
notion of increased apoptosis is consistent with the higher
cell death in the WT islets shown above (Fig. 1c). The

functional consequences of ATF3 in inflammation will be
addressed below (Fig. 9).

The effects of Atf3 KO in islet pro-inflammatory stress
Upon transplantation, grafts face a barrage of attacks from
the hosts. We examined the induction of ATF3 by pro-
inflammatory cytokines, as a combination of either two
cytokines (IL-1β+IFN-γ) or three cytokines (IL-1β+IFN-
γ+TNF-α). Islets were used 72 h after isolation, so that
ATF3 levels in the WT islets were relatively low before
induction. Figure 2 shows that ATF3 was induced by
cytokines in the islets at both the mRNA (Fig. 2a) and
protein (Fig. 2b) levels. Previously, we reported that Atf3
KO islets are partially protected from two cytokine-induced
apoptosis as evidenced by the decrease in the cell
population with sub-2N DNA content [22]. Consistent with
the previous results, Atf3 KO islets had reduced levels of
activated caspase 3 compared with WT islets (Fig. 2b). We
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Fig. 1 Atf3 KO islets are protected from isolation stress. a Primary
islets from WT and Atf3 KO mice were isolated and allowed to
recover for the indicated times. Atf3 mRNA levels were determined by
qRT-PCR and standardised against β-actin. The standardised signal at
time point 0 was arbitrarily defined as 1. Shown are means±SEM from
three experiments. Diamonds, WT; squares, KO. b Same as a but
immunoblot is shown (a representative of three experiments). c Islet
cell death was evaluated by PI (red) and Hoechst (blue) stain. One
hundred to 150 islets from each group were analysed and represen-

tative fields from each time point are shown. Scale bar, 400 μm. d
Quantification of images in c. The y-axis is the percentage of Hoechst-
positive pixels that are also PI-positive (see ESM Fig. 1 for detailed
steps of image analysis). Diamonds, WT; squares, KO. *p<0.001 vs
WT. e–k Same as in a except the indicated mRNAs for Noxa (e),
Bnip3 (f), Il-1β (g), Tnfα (h), Il-6 (i), Ccl2 (j) and Csf1(k) were
analysed. Shown are representative graphs from three experiments.
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then examined the expression of the candidate target genes
described above. Figure 2d–g shows that the WT islets had
higher expression of Tnfα, Il-1β, Il-6 and Ccl2 than the KO
islets (p<0.05), indicating that ATF3 also upregulates these
genes (directly or indirectly) in the islets under the pro-
inflammatory stress. No differences were observed for
Bnip3 or Tf (Fig. 2c and data not shown). The data for
Noxa were not reproducible in four repeated experiments
(not shown). Since ATF3 is induced by the pro-
inflammatory cytokines (TNF-α, IL-1β), its ability to
induce the expression of Tnfα and Il-1β indicates a positive
feedback loop.

The effects of Atf3 KO in islet hypoxia stress Upon removal
from the donors, the islets are subjected to hypoxic stress
until graft vascularisation in the host. We therefore
examined the induction of ATF3 by hypoxia (1% O2).
Again, islets at 72 h after isolation were used to reduce the
basal ATF3 level. Because the majority of islets started to
disintegrate after 4–6 h under hypoxia, it was not possible
to keep them continuously under this condition. We found
that cyclic exposures of islets to hypoxia (1%) and

normoxia (20%) for 1 h each allows them to maintain
overall integrity for 8 h. At the end of four cycles, the islets
start to lose their smooth boarders and appear unhealthy.
We therefore terminated the experiments after four cycles of
hypoxia and normoxia (Fig. 3a). Immunoblots indicated
that ATF3 was induced at the end of all cycles, and Fig. 3b
shows the data for cycles two and four. We also examined
the induction of hypoxia-inducible factor 1 alpha subunit
(HIF1-α) as a positive control for the hypoxic conditions
(Fig. 3b). PI coupled with Hoechst stain indicated reducing
viability (more PI stain) over cycles of hypoxia and
normoxia (Fig. 3c). As shown in the representative images,
PI signals were always at the centre of the islets, consistent
with the notion that the centre of the islets have least
oxygen and are most vulnerable to hypoxic stress. This is in
contrast to isolation stress, where PI signals started as
scattered on the islet surface then focused in the centre of
the islets (Fig. 1c), presumably because of the development
of a hypoxic centre over time. We also quantified the
signals by counting PI-positive pixels. Under hypoxia,
the size of the islet affects the size of the hypoxic centre;
the bigger the islets, the bigger the hypoxic centre. Thus,
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we plotted the number of PI-positive pixels against islet
size (as measured by Hoechst stain). Figure 3d and e
show bar graphs of the PI-positive signals after arbitrarily
dividing the islets into four groups: from small (<20,000
Hoechst-positive pixels) to big (>40,000 pixels). After two

cycles of hypoxia treatment (Fig. 3d), the differences
between WT and KO islets were statistically significant in
the larger islet groups, and after four cycles (Fig. 3e), the
differences were significant for all four groups. Thus, WT
islets were more vulnerable to hypoxic stress than KO islets.
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We then examined the expression of various candidate genes
in the islets after hypoxia stress. To our surprise, no genes
showed statistically significant differences between WT and
KO islets (Fig. 3f). Thus, under the hypoxia stress, ATF3
contributes to the reduced viability of the islets via a
mechanism independent of the genes we have examined
thus far.

The effects of ATF3 knockdown in beta cells Since the KO
mice may develop compensation or adaptation that could
complicate the phenotypes, we complemented the KO
approach by knockdown. As shown in Fig. 4a, b, ATF3
was induced by cytokines in the INS-r3 beta cells and
knocking it down reduced cytokine-induced caspase 3
activation. This result indicates that ATF3 promotes
cytokine-induced beta cell apoptosis and is consistent with
the above data using islets. As a step toward understanding
the mechanisms of ATF3 action, we examined the effects of
ATF3 knockdown on cytochrome c release, a key step in
apoptosis. Figure 4c shows that cytokine treatment induced
cytochrome c release and ATF3 knockdown reduced it.

Recruitment of ATF3 to the target promoters in the
pancreatic beta cells Taken together, the above results
indicate that ATF3 upregulates various target genes in a
stress-dependent manner and contributes to the lower islet
viability under all stresses examined. To address whether
ATF3 directly regulates the target genes we reported here,
we analysed their corresponding promoters by several
programs and found multiple potential ATF3 binding sites
on the promoters (ESM Fig. 2). Significantly, the majority
of these sites are conserved in mouse and rat. To check the
ability of ATF3 to bind to these sites in vivo, we carried out
ChIP assays using INS-1 and INS-r3 cells infected with

adenovirus expressing Atf3 or βgal (also known as Glb1) as
a control. Comparable results were obtained from these two
cell lines and the data from INS-1 cells are shown in Fig. 5.
ATF3 indeed bound to the Noxa, Bnip3, Il-1β, Il-6, Ccl2
and Tnfα promoters. Several controls were carried out for
the ChIP assay. The binding of ATF3 to the α-actin (Acta2)
or β-actin (Actb) promoter, which lacks recognisable ATF/
CRE sites, was examined. No binding was observed,
suggesting (albeit not proving) that the signals we observed
on the target genes were not caused by non-specific
binding. In the same samples, PolII was found to bind to
the promoter of β-actin (a beta cell gene) but not α-actin (a
non-beta cell gene), further validating the ChIP procedure
(data not shown). For all experiments, the ChIP signals
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were normalised against the input chromatin and the
normalised signals from ATF3-producing cells were divided
by that from β-galactosidase (βgal)-producing cells to
obtain the fold enrichment. If the fold enrichment was
the same for the ATF3 antibody and IgG (such as that at
the −4,800 site on the Il-1β promoter), we interpreted it as
background fold enrichment (thus no binding). Only if the
fold enrichment using the ATF3 antibody was larger than
that using IgG, did we interpret it as ATF3 binding. ESM
Fig. 2 describes the arbitrary definition of low, medium and
high binding. As summarised in ESM Fig. 2 and ESM
Table 1, ATF3 bound to various sites on these promoters.
We then asked whether the endogenous ATF3 binds to the
promoters. We treated the INS-r3 cells with cytokines to
increase the levels of ATF3 and examined its binding by
ChIP. Figure 6a–f shows that ATF3 bound to the indicated
sites of these promoters. We note that the binding of
endogenous ATF3 was lower than that of the ectopically
expressed ATF3 (using the above definition of binding),
presumably owing to the lower levels of endogenous ATF3.
We also examined the binding of the endogenous ATF3 to
these promoters in islets. We treated the WT islets with
cytokines immediately after isolation to increase ATF3
levels. Figure 6g–l shows that ATF3 bound to these
promoters, as evidenced by the higher ChIP signals using
the ATF3 antibody than IgG. As a control, the Atf3 KO
islets were used. No binding was observed except for Il-6,
where some background binding was observed. Collectively,
all the above ChIP results indicate that ATF3 binds (directly
or indirectly) to the promoters examined.

The roles of ATF3 in a syngeneic islet transplantation
model To test whether Atf3 KO islets would perform better
than WT islets in transplantation, we implanted the islets
under the kidney capsules of syngeneic WT mice. Mice
were rendered diabetic by streptozotocin (STZ) 1 week
prior to transplantation. At a saturating dose (400 islets),
both WT and KO islets restored euglycaemia (ESM Fig. 3).
At a marginal dose (250 islets), KO islets performed better
than the WT islets as indicated by several criteria: (1) lower
blood glucose levels from postoperative day (POD) 1 to
POD28 (Fig. 7a); (2) higher per cent of euglycaemic mice
from POD1 to POD28 (Fig. 7b); (3) better glucose
tolerance test on POD28 (Fig. 7c); (4) smaller AUC in the
glucose tolerance test (Fig. 7d); and (5) higher serum
insulin level on POD28 (Fig. 7e). Removing the grafts at
POD28 rendered the mice hyperglycaemic (Fig. 7a), con-
firming that the therapeutic effects were because of the
transplanted islets. Since ATF3 is pro-apoptotic, we
examined whether the KO islets had reduced apoptosis
using activated caspase 3 as a marker by immunohisto-
chemistry assay. The signals on POD5 were the highest
among the days we examined (POD1, 3, 5 and 7). Semi-
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quantification of the signals using the NIH ImageJ program
(see “Methods”) showed that KO islets had a lower
percentage of area that stained positive for activated
caspase 3 than the WT islets (4.51±1.07% vs 15.69±
3.12% in WT, multiple sections from four mice per group,
p<0.05). Figure 7f shows some representative images.
Parallel experiments using IgG as a negative control
showed no signals. We also stained the graft sections for

ATF3 and confirmed its production in the WT but not KO
islets. Insulin stains and haematoxylin plus eosin stains are
shown for comparison.

To examine whether ATF3 contributes to the induction
of the pro-apoptotic and pro-inflammatory genes described
above, we recovered the grafts and analysed their mRNAs
by qRT-PCR. Consistent with the in vitro data, WT islets
had higher expression of Noxa, Tnfα, Il-1β, Il-6 and Ccl2
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Fig. 6 Endogenous ATF3 binds to the promoters of the pro-apoptotic
and pro-inflammatory target genes. a–f INS-r3 beta cells were
untreated or treated with cytokines (IL-1β, TNF-α and IFN-γ), and
ATF3 binding to the indicated promoters at 5 h after treatment was
analysed by ChIP using the primers for the indicated sites for Noxa
(a), Tnfα (b) Bnip3 (c), Il-6 (d), Il-1β (e) and Ccl2 (f). The normalised
ChIP signals (against the input chromatin) from the treated cells were
divided by that from the untreated cells to obtain the ‘fold
enrichment’. Fold enrichment from immunoprecipitation using either

IgG (black bars) or ATF3 antibodies (white bars) is shown. The
experiments were carried out twice and the results from one
experiment are shown. g–l WT or Atf3 KO islets immediately after
isolation were treated with cytokines and ATF3 binding to the
indicated promoters at 12 h after treatment was analysed by ChIP
for Noxa (g), Tnfα (h) Bnip3 (i), Il-6 (j), Il-1β (k) and Ccl2 (l). The
experiments were carried out twice and the results from one
experiment are shown. Black bars, IgG; white bars, ATF3 antibody

1446 Diabetologia (2010) 53:1438–1450



than the KO islets (Fig. 8, p<0.05), indicating that ATF3
contributes to their upregulation (directly or indirectly) in
the grafts. Since CCL2 is a potent macrophage recruitment
factor [24], we asked whether the WT and KO islets differ
in their abilities to recruit macrophages by assaying the
grafts for F4/80, a macrophage marker [32]. Figure 9a
shows that macrophages were recruited to the grafts starting
at POD2. Interestingly, they surrounded the grafts without
infiltrating them. The recruitment continued to increase
over time to POD7, when the experiments were terminated.
To semi-quantify the signals, we used the NIH ImageJ
program as detailed in the Methods. Figure 9b shows that
macrophage recruitment was lower in the KO than in the

WT grafts. Although the difference was only 10–20%, they
were statistically significant (p<0.05), suggesting that
ATF3 production in the WT islets contributes to their
ability to recruit macrophages. To further test this idea, we
compared the ability of the conditioned media derived from
WT or KO islets (following the isolation stress) to enhance
the motility of macrophages using the Boyden chamber
migration assay. We isolated bone marrow cells from the
femur and differentiated them into macrophages in vitro.
We then placed the macrophages in the top half of the
Boyden chamber and put the conditioned media from
the islets in the bottom half, followed by measuring the
macrophages on the underside of the membrane at 12 h
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after incubation. Normal medium was used as a control and
macrophage migration under this condition was arbitrarily
defined as 1. Figure 9c shows that conditioned media from
the WT islets induced macrophages to migrate more
efficiently than that from the KO islets. Thus, the in vitro
migration assay supported the notion that ATF3 facilitates
macrophage recruitment by the islets.

Discussion

In this report, we present evidence that ATF3 upregulates
pro-apoptotic genes and genes involved in immunomodu-
lation. Previously, we showed that ATF3 downregulates
IRS2 [23], a potent pro-survival factor in beta cells,
providing a mechanistic insight to the pro-apoptotic action
of ATF3 in pancreatic beta cells [22, 23]. Results described
in this report indicate that ATF3 upregulates the expression
of Noxa, providing another potential explanation for the
ability of ATF3 to promote beta cell death. Since apoptosis
is a major reason for islet loss during transplantation, it is
not surprising that the Atf3 KO islets performed better than
WT islets in transplantation. Our results are consistent with
previous reports that dampening apoptosis improves trans-
plantation. However, our studies differ from previous
reports in two key aspects. First, we dampened cell death
by deleting a pro-apoptotic gene, rather than ectopically
expressing anti-apoptotic genes, such as Tnfaip3 (also
known as A20), Hgf, Bcl2, Akt, Irs2 and Xiap [26, 27,
33–37]. Since ATF3 is induced during the course of
transplantation, our approach attenuates a naturally occur-
ring deleterious event. Second, ATF3 deficiency also damp-
ens inflammation, a benefit that has not been demonstrated
by the other approaches. Since the inflammatory response
has emerged as an important factor in islet graft rejection
(below), this is a significant advantage.

The upregulation of Ccl2 by ATF3 has important
implications. CCL2 is a chemokine and recruits macro-
phages [24]. Thus, its upregulation by ATF3 provides an
explanation for the reduced macrophage recruitment in the
KO grafts. Functionally, macrophage depletion in the
recipients has been demonstrated to improve islet graft
survival [16, 38]. These results complement and further
strengthen the idea that ATF3 deficiency is beneficial to the
islet grafts. The upregulation of Tnfα, Il-1β and Il-6 by
ATF3 also has significant implications. These cytokines
have been demonstrated to have deleterious effects on beta
cells [39, 40] and contribute to primary non-function in islet
transplantation [18, 41]. Since ATF3 itself is induced in the
islets by TNF-α and IL-1β, it forms a positive feedback
loop to amplify these pro-inflammatory signals. The
relevance of TNF-α in human islet transplantation is
demonstrated by a clinical trial where the TNF-α receptor

antagonist, in conjunction with a glucagon-like peptide-1
agonist, improved the Edmonton Protocol [8]. Thus, the
ability of ATF3 to amplify TNF-α signal is of significance.
We note that ATF3 has been shown to downregulate the
expression of Tnfα, Il-6 and Il-12b (also known as Il12b) in
macrophages upon lipopolysaccharide treatment [29, 42,
43]. Thus, ATF3 functions in macrophages to dampen,
rather than enhance, the inflammatory responses (as shown
here in islets). Explanations for this apparent discrepancy
include the differences in cell types and stress signals.

Taken together, our results suggest a critical role for
ATF3 in primary non-function. To the best of our
knowledge, this is the first to demonstrate the protective
effects of Atf3 KO in islet transplantation, and the first to
implicate ATF3 in the ability of islet grafts to induce
inflammatory reactions. In light of the emerging views
that inflammation plays an important role in islet graft
rejection [44, 45], our results suggest that ATF3 may be a
therapeutic target to improve islet transplantation. The
benefits of silencing Atf3 include not only the reduction
of cellular decision to undergo cell death, but also the
reduction of the ability of islets to provoke host inflamma-
tory response.
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