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Statistical analysis is critical in the interpretation of experimental data across the life sciences, including neuroscience. The nature of the
data collected has a critical role in determining the best statistical approach to take. One particularly prevalent type of data is referred to
as “clustered data.” Clustered data are characterized as data that can be classified into a number of distinct groups or “clusters” within a
particular study. Clustered data arise most commonly in neuroscience when data are compiled across multiple experiments, for example
in electrophysiological or optical recordings taken from synaptic terminals, with each experiment providing a distinct cluster of data.
However, there are many other types of experimental design that can yield clustered data. Here, we provide a statistical model for
intracluster correlation and systematically investigate a range of methods for analyzing clustered data. Our analysis reveals that it is
critical to take data clustering into account and suggests appropriate statistical approaches that can be used to account for data clustering.

Introduction

Statistical analysis is a foundation of all
biological research. Various methods
exist to test whether there is a difference
in the response, for example, between a
“control” and a “treated” sample. Ob-
servations are generally made across a
series of independent experiments to
ensure that a result is reproducible. Re-
sults from a single experiment (such as
reporting measurements from a single
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electron micrograph) lack reproducibil-
ity. Statistically significant differences
between groups (typically, p < 0.05) in-
dicate that the observed difference is
unlikely to have occurred by chance,
suggesting a “real” difference between
groups. Research outcomes rely on the
presentation of statistically valid con-
clusions, and thus the approach used for
statistical analysis is critical.

Statistical analysis must consider fea-
tures of the data, including the measure-
ment scale (e.g., continuous, binary, or
categorical), the experimental units, and the
way in which the data were collected. One
type of data that arises from certain data col-
lection schemes or from the way the experi-
mental units are structured is clustered data.

Clustered data are frequently obtained
in the neurosciences, but rarely is its anal-
ysis discussed explicitly in neuroscience
literature. There are many useful refer-
ences throughout the statistical literature
that discuss clustered data (for examples,
see Brown and Prescott, 1999; Gonen et
al., 2001; Zyzanski et al., 2004). The aim of
our paper is to consolidate some of the
issues surrounding clustered data, present

them in a form accessible to neuroscien-
tists, and provide ways of dealing with
what is a widely encountered type of data
in neuroscience. We undertake a study of
clustered data and demonstrate that it is
critical to take clustering into account in
the analysis of data generally in neuro-
science. We address this in two parts. In
Part 1, we will describe the nature of clus-
tered data and provide examples of ap-
proaches to analyze clustered data. In Part
2, we study the effects of using these differ-
ent statistical approaches in the analysis of
clustered data. We conclude with sugges-
tions on the most effective methods for deal-
ing with clustered data. As we will show,
using an appropriate statistical approach
that takes clustering into account may criti-
cally impact the results of an analysis and,
hence, the conclusions of a study.

Part 1: What is clustered data?

The term “clustering,” as used in this paper,
is not related to the statistical technique
“cluster analysis,” which is an unsupervised
learning technique used to uncover hidden
structure in the data. Instead, clustering will
be apparent from the way the data are col-
lected, as discussed below.
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Clustered data arise when the data
from the whole study can be classified
into a number of different groups, re-
ferred to as clusters. Each cluster con-
tains multiple observations, giving the
data a “nested” or “hierarchical” struc-
ture, with individual observations
nested within the cluster. The key fea-
ture of clustered data is that observa-
tions within a cluster are “more alike”
than observations from different
clusters.

There are many examples where clus-
tered data occurs in neuroscience, such as
the following:

(1) Studies that obtain data from mul-
tiple experiments where several
observations are collected from
each experiment. Consider, for
example, a study of synapse popu-
lations comprised of a series of in-
dependent experiments where
each experiment yielded data
from multiple synapses. In this ex-
ample, all data obtained from the
same experiment, i.e., synapse
data obtained from the same sec-
tion, synapse data obtained from
the same slide, or synapse data ob-
tained from the same animal, con-
stitute a cluster.

(2) Longitudinal data, where multiple
measurements are taken over time
on each individual. For example,
in animal models of neurological
disease the measurements at dif-
ferent times on the same animal
form a cluster.

(3) Multicenter clinical trials, where a
cluster consists of measurements
on patients from the same center.

(4) Cluster randomized trials where,
for example, whole clinics are ran-
domized to an intervention. Here,
the clusters are formed of patients
within clinic.

(5) Genetic epidemiology studies us-
ing family data. Here, data on
members of the same family con-
stitute a cluster.

The fact that observations within a
cluster are more alike than observations
from different clusters induces a corre-
lation between observations within the
same cluster. This is referred to as intra-
cluster correlation. Thus, observations
within a cluster are correlated, whereas
observations from separate clusters are
regarded as independent. Since observa-
tions within a cluster do not contribute
completely independent information,
the “effective” sample size is less than

the total number of observations from
all clusters.

Part 1.1: A specific example of

clustered data

Our focus is on testing hypotheses by com-
paring observations from two groups, such
as a treated group versus a control group. As
a case in point, consider a hypothetical ex-
periment directed to assess whether a drug
leads to altered rates of exocytosis from syn-
apses in vitro. To address this question on a
given day, neurons on 10 coverslips are each
to be treated with 10 ug/ml drug, while neu-
rons on another 9 coverslips are to be
treated with vehicle. The following day the
rate of exocytosis at between 10 and 40
synapses per coverslip is to be determined.
Let us say that such an experiment yielded
exocytosis rate data on a total of 123 syn-
apses from 10 drug-treated coverslips and
data from 157 synapses from 9 untreated
coverslips. The aim of the study is to test
the null hypothesis that there is no effect
of the drug on the exocytosis rate.

In fact, in this hypothetical experi-
ment, the synapses are nested within cov-
erslip and, hence, the data obtained from
individual coverslips constitute clusters.
For each synapse, we observe unique exo-
cytosis kinetics, and the exocytosis rate
can be estimated. The exocytosis rates for
treated and untreated synapses could be
compared using, for example, a two-
sample ¢ test (if the data are approximately
normally distributed). However, it is pos-
sible that other conditions within a cover-
slip, apart from treatment, are more
similar than conditions on different cov-
erslips. Hence, the synapses from the same
coverslip share similar conditions and
may be more or less likely to release neu-
rotransmitter through exocytosis than
synapses from different coverslips, quite
apart from the treatment effect.

In the above example, the individual
observations belong to a number of differ-
ent clusters. While we are not usually pri-
marily interested in the cluster effect, it
must be taken into account to ensure va-
lidity of the treatment comparison. If the
clustering is not taken into account for
this type of data, then the variability is
likely to be underestimated and the results
of the analysis invalidated.

Part 1.2: Two classes of clustered data
Throughout this document, we will refer
to two classes of clustered data, which for
convenience we will call case 1 data and
case 2 data.

In the hypothesis testing context, it is
useful to distinguish between two differ-
ent kinds of clustered datasets: case 1,
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where only one of the groups that is being
compared is represented in each cluster;
and case 2, where (at least some of) the
clusters contain observations from both
groups. The hypothetical experiment in
Part 1.1 above is an example of case 1.
Another example of case 1 is a cluster ran-
domized trial where, for practical reasons,
it is necessary to randomize all of the pa-
tients from a particular clinic to the same
intervention. For example, all patients
from one clinic might receive the usual
standard of care, while all patients from
another clinic participate in an additional
health care education program. Here, the
unit of randomization is the clinic. The
data from each clinic is clustered and each
cluster will contain either patients receiv-
ing standard care or patients receiving the
education program in addition to stan-
dard care. An example of case 2 is a mul-
ticenter clinical trial where, to widen the
patient base, patients are recruited from a
number of different centers, but within
each center some patients will be random-
ized to one treatment and some to the
other treatment. Here, the unit of ran-
domization is the patient. Data from each
clinic are clustered, but this time the clus-
ters will contain both control and treated
patients. The best methods for analyzing
case 1 and case 2 data may differ, and this
will be discussed in later sections.

It is a fact that clustered data are very
common in neuroscience. Experiments
yield multiple observations, animals yield
observations on multiple litter members, or,
at a series of times, research centers contrib-
ute data on multiple patients. In each case
we are faced with clustered data that raise
the question: is conventional statistical anal-
ysis sufficient, or should a method be used
that specifically accounts for clustering? We
shall address this question in detail.

Part 1.3: A statistical model for
intracluster correlation

Suppose we collect data from several inde-
pendent experiments that represent the
clusters. The similarity between clusters
might be accounted for by assuming that
there is a common mean response within
a cluster that varies randomly between
clusters. The response within clusters also
varies due to individual-level heterogene-
ity. This leads to the model for the data,
Yik = U+ b, + €, where y;, is the value of
the response variable for unit i in cluster k,
and p is the overall mean. The remaining
two terms represent the two levels of vari-
ation in the data, with &; representing the
“within-cluster” variation between obser-
vations from the same cluster, and b, the
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“between cluster” variation. In statistical
terms, by is a random cluster-specific ef-
fect with mean zero and variance o7, and
€, 1s a residual error term with mean zero
and variance o.. The residual errors
from different individuals (&) and the
random effects from different clusters
(by) are assumed to be independent. In
this model, the correlation between two
different observations from the same
cluster arises because of the random
effect by, and this correlation is equal
to oi/(0f + o2). While observations
within each cluster are correlated, there
is no correlation between observations
from different clusters because the ran-
dom effects from different clusters and
the residual errors from different indi-
viduals are independent.

Part 1.4: Analysis of clustered data

Having defined clustered data, we will
now address the various ways in which
clustering can be treated. In reviewing the
literature, it would appear that four ap-
proaches have generally been used in the
analysis of clustered data: (A) ignoring
clustering; (B) reducing clusters to inde-
pendent observations; (C) fixed effects re-
gression/ANOVA approaches; and (D)
explicitly accounting for clustering.

Each of these approaches will be dis-
cussed in detail here. By way of example,
we will make specific reference to optical
analysis of presynaptic function. Optical
methods of studying presynaptic function
use fluorescent tracers, such as styryl dyes
or synaptopHluorin, to mark synaptic
vesicles that are undergoing release. Opti-
cal methods yield clustered data because
each independent experiment provides
data from multiple synapses that can be
visualized individually under the micro-
scope. Observations from a population of
synapses within the same experiment are
clustered and hence are more similar than
observations of synapses acquired in sepa-
rate experiments. Studies using these optical
methods have adopted various approaches
to analyze their data, and thus these studies
provide an insight into ways in which clus-
tered data may be approached.

Approach A: Ignoring clustering. Two
questions that researchers may ask are: (1)
do I have clustered data; and (2) should I
use a method that accounts for clustering?
Question 1 can be answered without any re-
course to statistical tests; it is simply a matter
of study design. If a study collects multiple
observations in a number of different groups,
then the data are clustered. Question 2 is
really asking what the consequences of ig-
noring the clustering would be.

In the past, methods for handling clus-
tered data have not been as well developed
or widely understood as methods for inde-
pendent data. Therefore, in many studies
that generate clustered data the simplest
approach has been adopted, namely to ig-
nore the clustering and treat the data as if
all observations were independent. The
consequences of adopting this approach
will depend on the nature of the correla-
tion that actually exists in the data, which
will be discussed in Part 2.

Many studies that involve optical re-
cording from synapses have ignored clus-
tering. In these studies, the data obtained
from individual synapses are pooled to
create a single large dataset. The studies
then use the number of individual bou-
tons analyzed as the statistical n value, that
is, they assume the data gathered at each
synapse to be an independent measure-
ment. This assumption is not valid, as the
studies are conducted across multiple ex-
periments and therefore yield data that
are clustered (i.e., the individual observa-
tions are not independent). It is possible
that had a statistical method that ac-
counted for clustering been used, the con-
clusions of some studies may potentially
have been different.

Approach B: Reducing data to indepen-
dent observations. Another widely used
approach consists of two stages. The first
stage is to reduce the multiple observa-
tions in a cluster to a single observation by
taking a suitable summary, which is com-
monly the mean of all the observations in
each cluster. The resulting data points are
all from different clusters and are thus re-
garded as independent. The reduced data
can then be analyzed using standard
methods for independent observations
(such as a ¢ test). This approach is com-
mon in many types of study, for example
in electrophysiology studies in which
multiple recordings from a single cell are
all averaged to give a single measurement.

This approach has been used by several
studies that performed optical recording for
some (Pyle et al., 2000; Mozhayeva et al.,
2002; Krueger et al., 2003; Fernandez-
Alfonso and Ryan, 2004) or all (Virmani et
al., 2006; Willeumier et al., 2006) aspects of
their analyses. The studies examined indi-
vidual synapses but the data from each ex-
periment were averaged, thereby reducing
multiple observations to a single observa-
tion for each experiment.

Reducing the data to independent ob-
servations is a valid approach to studying
clustered data. The correlation associated
with data clustering has effectively been
removed and no longer needs to be ac-
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counted for. Studies that reduce data to
the cluster means need only assume that
separate experiments are independent.

However, there are limitations to this
approach. Firstly, if there are unequal
numbers of observations per cluster, then
an unweighted method of second stage
analysis may not be the most appropriate.
Simply taking the mean of each cluster
and then comparing these values by a ¢
test, for example, does not take the un-
equal number of observations per cluster
into account. Clusters with more observa-
tions could be expected to contribute
more information and, thus, should be
given more weight in the analysis.

Another disadvantage is that by tak-
ing the average of the observations in
each cluster, information regarding the
individual observations is lost in the
process. Reducing a cluster to its mean
value is a trade off in which clustering is
eliminated but information about the
individual observations is lost. The loss
of information may have the result that
an analysis based on cluster means is less
powerful than an approach that incor-
porates information on the individual
observations. A number of studies have ex-
amined functional heterogeneity across
populations of individual synapses (Murthy
et al., 1997; Ryan et al., 1997; Murthy and
Stevens, 1998; Waters and Smith, 2002;
Moulder et al., 2007; Daniel et al., 2009). In
these studies the examination of individ-
ual synapses was key and, hence, these
studies could not have been performed if
data from each independent experiment
(i.e., cluster) were averaged.

A complication arises in the analysis
of case 2 data (described in Part 1.2) in
which a single cluster can contain obser-
vations from both of the groups that the
investigators wish to compare. In this
case, the data cannot be reduced to justa
single measurement of the response for
each cluster, since separate results need
to be kept for the two groups being com-
pared. The data could be reduced to a
pair of observations per cluster, namely
the mean response for each group. A
paired comparison could then be per-
formed, such as a paired ¢ test for nor-
mally distributed data or a Wilcoxon
signed rank test for non-normal data.

In sum, although reducing the obser-
vations in each cluster is strictly a valid
approach to analyzing clustered data,
there are cases in which simply taking
the mean from each cluster will not
be the best approach. It is with this in
mind that we move on to the third and
fourth approaches.
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Approach C: Fixed effects regression/
ANOVA approaches. The idea here is that
the cluster effect could be taken into ac-
count by including it as a factor in a stan-
dard regression model. Hence, if the aim
is to compare two groups, then we would
set up a regression model with explana-
tory variables consisting of an indicator
for “group” and, in the case of K clusters,
(K-1) indicator variables for the clusters.
For a normally distributed outcome, this
is equivalent to an ANOVA approach.

To consider this approach in more de-
tail, it is instructive to consider our earlier
example regarding the comparison of
exocytosis rates between treated and un-
treated synapses. Each coverslip receives
only one treatment, either toxin or vehi-
cle, and so each coverslip contains obser-
vations from only one treatment group.
Thus, only one of the groups being com-
pared is represented in each cluster, which
we refer to in Part 1.2 as case 1 data. For
case 1 data there is no within-cluster com-
parison of the groups available and,
hence, insufficient information to esti-
mate both the group effect and a fixed ef-
fect for each cluster. Thus, a fixed effects
regression could not be used in this case.
This is true for all case 1 data, regardless of
whether data are normally distributed,
skewed, binomial, etc. For our specific ex-
ample, if the data follow a normal distri-
bution, a valid method of analysis would
be to use a linear mixed model, as dis-
cussed in approach D.

In studies that yield case 2 data (Part 1.2)
a fixed effects regression approach may be
suitable. Each cluster contains observations
from both groups being compared, which
allows a within-cluster comparison of the
two groups. A model including both the
group effect and a fixed effect for each clus-
ter can be fitted. This analysis essentially
“controls for” the cluster effect, which can
be regarded as a nuisance, and estimates the
group effect at a fixed level of cluster (that s,
within each cluster).

However, there are some remaining is-
sues with this approach. One issue is
whether a fixed or random effect for clus-
ter is more appropriate. If a fixed effect is
used, then the results of the analysis are
strictly only applicable to the particular
set of clusters in the study. With a random
cluster effect (as would be the case with a
mixed model, discussed in approach D),
the clusters are regarded as a random sam-
ple from a wider population of clusters, so
the results can be generalized to the wider
population. Similarly if a cluster by group
interaction is to be fit, it may be concep-
tually more appealing to regard the group

effect as varying randomly over the clus-
ters. This approach also makes it possible to
include an interaction effect even if some
clusters only contain observations from one
group; this would not be possible with a
fixed effects approach. Additionally, if we
are interested in the group comparison
within a given cluster, then the random ef-
fects approach allows us to incorporate in-
formation from all of the clusters, whereas
the fixed effects approach uses information
from that cluster alone.

For certain types of “clustered” data a
random effects approach is inherently
much more appealing. For example, with
longitudinal data where there are multiple
measurements over time for each individ-
ual and we want to model a linear trend
over time, incorporating a fixed effect for
each individual would be very cumber-
some and the random effects approach is
almost universally used.

Finally, there may be situations where
the correlation structure is itself of inter-
est (for example, genetic studies). Use of a
fixed effects model would not allow this
correlation structure to be studied.

Nevertheless, use of a fixed effect for
cluster is often possible for case 2 data and
can offer benefits in terms of lower SEs,
particularly when the number of clusters
is small. The issues regarding the choice of
fixed versus random effects are complex.
For further discussion see, for example,
the book by Brown and Prescott (1999) or
the article by Senn (1998).

A final issue (that is not unique to the
fixed effects regression approach) relates to
the type of outcome variable. If the data are
normal or can be transformed to normality,
then a normal regression (ANOVA) ap-
proach with a fixed effect for cluster and an
effect for group can be used. For non-
normal data, a generalized linear model
could be used or, alternatively, a test such
as the Wilcoxon rank sum test, suitably
modified to account for clustering, could
be used. A discussion of such tests appears
in the next subsection.

Approach D: Methods that explicitly ac-
count for clustering. Several methods are
available that explicitly account for the
within-cluster correlation and, as such,
are ideal for analyzing clustered data. The
methods can be classified into two broad
groups, which we detail below.

Group 1: Methods that adjust existing
tests to account for clustering. These ap-
proaches are used to test the null hypoth-
esis of no difference between two groups
of observations.

The statistical test used depends very
much on data distribution. A test for nor-
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mally distributed, clustered data adjusts
the standard two-sample ¢ test by an addi-
tional factor designed to take account of
the intracluster correlation. Thus, the ¢
test can be modified to account for data
clustering. A similar approach has been
proposed for binary response data, in
this case adjusting the usual x? statistic
(Donner and Banting, 1988). These
methods have been reviewed in detail
previously (Gonen et al., 2001).

When analyzing clustered data that
are not normally distributed, rank-
based tests have been developed. For
case 1 clustered data, modifications of
the Wilcoxon rank sum test (equiva-
lently, the Mann—Whitney U test) have
been proposed (Rosner and Grove,
1999; Rosner et al., 2003).

For case 2 data, in which a single clus-
ter contains observations from both
groups under comparison, rank-sum tests
have also been developed (Datta and Satten,
2005; Rosner et al., 2006b; Larocque et
al., 2010). To illustrate the application of
such tests, we refer the reader to our re-
cent study of dopaminergic synapses
(Daniel et al., 2009). We identified two
distinct types of bouton in each experi-
ment: (1) synaptic boutons, which consti-
tuted conventional synapses consisting of
both presynaptic and postsynaptic com-
ponents; and (2) nonsynaptic boutons,
which possessed no postsynaptic compo-
nent. We used the Datta and Satten (2005)
test to compare the probability of vesicle
release at these two bouton populations.
This approach allowed us to account for
the non-normal distribution of the data,
the cluster effect of having a dataset com-
prised of multiple independent experi-
ments, and the fact that observations from
each of the groups being compared were
present in each experiment.

Signed-rank tests have also been devel-
oped for paired data, where the pairs are
clustered (Rosner et al., 2006a,b; Datta
and Satten, 2008).

Group 2: Modeling approaches. Model-
ing approaches are generally more com-
plex than the methods discussed above
but are particularly useful when there are
other covariates that need to be included
in the analysis, such as temperature or
time of day. For normally distributed
data, a linear mixed model (LMM) can be
used (Laird and Ware, 1982). These mod-
els incorporate random cluster-specific
effects, as in the statistical model for intra-
cluster correlation described previously,
which induce the within-cluster correla-
tion. Generalized linear mixed models, an
extension of LMMs, can be used for con-
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Table 1. Parameters used in generating simulated data

Model Data Number of Average Range of Number of
number distribution Case B clusters cluster size cluster sizes observations
1 Normal 0 20 10 5-16 200
2 Normal 1 1 20 10 5-16 200
2 0.2
3 Skewed 0 20 10 5-16 200
4 Skewed 1 1 20 10 5-1 200
2 03
5 Normal 0 8 6 3-9 48
6 Normal 1 2 8 6 3-9 48
2 0.5
7 Skewed 0 8 6 3-9 48
8 Skewed 1 2.5 8 6 3-9 48
2 1

The simulations with 3 = 0 (no difference between group 1and group 2 data) investigate how liberal/conservative the tests are (performance under the
null), whereas the simulations with 3 # 0 (real difference between group 1and group 2 data) investigate the power of the test (performance under the
specified alternative). Case 1 refers to data where only a single group is represented in each cluster, and case 2 refers to data with approximately equal
numbers from both groups in each cluster. For each of the 8 models, 10,000 datasets were generated.

tinuous non-normal, binary, and categor-
ical responses. For survival data, random
“frailties” can be used to induce within-
cluster correlation in a manner akin to
that used for mixed models.
Generalized estimating equations
(GEEs) constitute another approach
(Liang and Zeger, 1986), which can also be
used for continuous non-normal, binary,
and categorical responses. GEEs sepa-
rately model the mean response and the
within-cluster association, assuming pri-
mary interest is in the former and regard-
ing the latter as a nuisance that must be
taken into account for valid inference.
Thus, there are a number of analyti-
cal approaches that adequately account
for intracluster correlation. These ap-
proaches are ideally suited to the analy-
sis of clustered data. Moreover, the
method used to analyze clustered data
can have significant effects on results, as
we will demonstrate in the next section.

Part 2: The effect of clustering on the
outcomes of statistical analyses

The impact of clustering on the various
methods at our disposal depends crucially
on the strength of the intracluster correla-
tion. Specifically, if the intracluster correla-
tion is relatively strong, then the failure to
take clustering into account is likely to have
a more profound effect on the outcomes of
statistical analyses than if it is weak, as we
shall show. However, the impact of cluster-
ing on statistical analysis also depends on
the distribution of the data (for example,
symmetric or skewed), the number of clus-
ters, and the number of observations per
cluster.

In this section, we will use randomly
generated datasets to illustrate how vari-
ous methods of statistical analysis per-
form when analyzing clustered data.

Randomly generated datasets, created
from a known statistical model, enable the
performance of the analytical methods to
be compared with desired levels. This al-
lows us to assess the suitability of each test
with different types of data and different
population sizes. We will manipulate sev-
eral variables within the simulation so as
to examine as many different scenarios as
possible, thereby providing a comprehen-
sive overview of how different kinds of
statistical tests perform for different types
of data. For interested readers, we also
provide some mathematical intuition de-
scribing the effect of clustering on hy-
pothesis testing (see supplemental Fig. S1,
available at www.jneurosci.org as supple-
mental material).

First, we will examine how liberal/con-
servative a given statistical test is. To exam-
ine this question, we generate datasets
according to a model that specifies no differ-
ence between the two groups being com-
pared. We then test the null hypothesis of no
difference between the two groups using a
5% significance level. Accordingly, we
should see the null hypothesis rejected for
about 5% of the datasets. A test that rejects
the null hypothesis >5% of the time is too
liberal, and one that rejects it <5% of the
time is too conservative.

Second, we will investigate the power
of a given statistical test, which indicates
how effective a test is in detecting that a
difference exists between two groups. To
do this, we will generate data under an
alternative hypothesis, specifying a real
difference between the two groups. Given
two tests that maintain the correct 5% size
under the null hypothesis, we would pre-
fer the one that correctly rejects the null
hypothesis for a higher proportion of
datasets generated under the alternative
hypothesis, since it has higher power.
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Simulation studies comparing some of
the methods we consider have been per-
formed elsewhere. For example, Feng et
al. (1996) compared LMM and GEE, as
well as two other estimation methods.
Datta and Satten (2005) compared their
test with both the standard Wilcoxon test
ignoring clustering and the Wilcoxon test
on cluster means. Rosner et al. (2006b)
compared their test with LMM and the
Wilcoxon signed rank test. Larocque et al.
(2010) compared their proposals with the
Datta and Satten (2005) and Rosner et al.
(2006b) tests. However, to provide a
comprehensive view of the methods
available to analyze clustered data, we
wanted to compare methods from all of
the categories discussed in Part 1.4, ap-
proaches A-D, on a common set of sim-
ulated datasets. We are unaware of any
previous papers that perform this full
range of comparisons.

Part 2.1: Generation of simulated data

In preparing our simulated data, the
number of clusters and the total number
of observations were fixed for each simu-
lation. Cluster sizes were generated from a
multinomial distribution. We considered
separately the two types of data distin-
guished in Part 1.2: case 1, where only a
single group is represented in each cluster,
and case 2, where clusters contain obser-
vations from both groups. For case 1, half
of the clusters were assigned to each of the
two groups of observations being com-
pared. For case 2, approximately half the
observations in a cluster were assigned to
each of the two groups (exactly half, if the
cluster size was even, or an imbalance of 1,
if the cluster size was odd). Cluster sizes
and type allocations were then held fixed
for each simulation.

Normally distributed data were gener-
ated according to the model y;, = pn +
Bz + by + &, and skewed data were gen-
erated according to the model y; =
exp(n + by + &) + Bz, where y;, is the
value of the response variable for unit 7 in
cluster k, z;, represents the group to which
observation 7 in cluster k belongs (0 for
group 1, 1 for group 2), b, are indepen-
dent and normally distributed with mean
zero and variance o7 = 0.7, and €;, are
independent and normally distributed
with mean zero and variance o2 = 0.3.
This corresponds to an intracluster corre-
lation of 0.7. In these models, the param-
eter B corresponds to the group effect,
such that B = 0 corresponds to no differ-
ence between the two groups of observa-
tions. Table 1 shows the remaining
parameter choices for each simulation. By
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altering these parameters, we generated
datasets from eight different models,
which were examined using various statis-
tical methods (see below).

Part 2.2: Methods of statistical analysis
Having generated clustered data under
eight different models (Table 1), we will
next demonstrate how effectively seven
different established statistical methods
performed in the analysis of these differ-
ent simulated datasets. The statistical tests
we examined are as follows:

(1) A 2-sample ¢ test, applied to the
two groups of individual observa-
tions. In this test, clustering is not
accounted for, since each observa-
tion is treated as independent.

(2) A Wilcoxon rank-sum test, ap-
plied to the two groups of individ-
ual observations. Clustering is not
accounted for, as above.

(3) A t test, applied to the cluster
means. For case 1 data, each clus-
ter was reduced to a single mean
and a two-sample t test was per-
formed. For case 2 data, each cluster
was reduced to a pair of means (one
for each group) and a paired ¢ test
was performed. In these tests, clus-
tering is effectively removed by re-
ducing the data to the cluster means.

(4) A Wilcoxon rank-sum test, applied
to the cluster means (for case 1 data)
or a Wilcoxon signed rank test, ap-
plied to the paired cluster means
(for case 2 data). Clustering is effec-
tively removed by reducing the data
to the cluster means, as above.

(5) LMM (Laird and Ware, 1982).
This modeling approach incorpo-
rates the intracluster correlation
effect, and thus accounts for data
clustering without reducing the
data to the cluster means.

(6) GEE (Liang and Zeger, 1986), us-
ing an “exchangeable” working
correlation structure, i.e., cor-
rectly assuming equal correlation
between observations within a
cluster. This modeling approach
also accounts for data clustering.

(7) Rank-sum test for clustered data
(Datta and Satten, 2005). This is a
modification of the Wilcoxon
rank-sum test that accounts for
the intracluster correlation.

LMM and ¢ tests assume that the data
are approximately normally distributed,
whereas the other approaches do not re-
quire this assumption.

For case 2 data, we also considered a nor-
mal linear regression model (i.e., ANOVA,
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Figure 1.

A sample dataset generated from model 1. For illustrative purposes, a single dataset generated under model 1 is

shown. On the left are shown the individual observations using different colors for the different clusters within each group. In this
simulation, no difference exists between group 1and group 2 data. However, the similarity of observations within a cluster, which
induces intracluster correlation, is apparent here, as observations within each cluster lie close to each other. On the right are
shown the data reduced to cluster means. The color of each mean represents the cluster to which it belongs.

Table 2. Performance of various tests in analyzing sample data

Estimated p value for test
Method difference 95% Cl for difference of no difference
1. Two-sample t test (individual observations) 0.517 (0.230, 0.805) 0.0005
2. Wilcoxon (individual observations) 0.486 (0.200, 0.769) 0.0013
3. Two-sample  test (means) 0.476 (—0.318,1.269) 0.2235
4. Wilcoxon (means) 0.425 (—0.387, 1.286) 0.2475
5.LMM 0.476 (—0.322,1.275) 0.2260
6. GEE 0.476 (—0.228,1.180) 0.1850
7. Rank-sum test for clustered data (Datta 0.2015
and Satten)

Table 2 summarizes the results of applying the above methods to the dataset pictured in Fig. 1. We tested the null hypothesis that there was no significant
difference between group 1and group 2 observations. Methods 1 ( test) and 2 (Wilcoxon) were conducted on individual observations, thereby ignoring
clustering. Methods 3 and 4 were applied after the data were reduced to the means of each cluster, thereby eliminating clustering. Unlike the t and Wilcoxon
tests, LMM, GEE, and the rank-sum test of Datta and Satten (2005) are able to explicitly account for clustering. CI, Confidence interval.

as described in Part 1.4, approach C) with a
factor for cluster as well as the group effect.
This is similar to LMM, except that cluster
is treated as a fixed effect rather than a
random effect. Since the results were very
similar to LMM for the scenarios we consid-
ered, where clusters were approximately
equally split between the two groups, we
have not reported them separately. Note
that this approach cannot be used for case 1
data, since there is no within-cluster com-
parison of the groups available and, hence,
insufficient information to estimate both
the group effect and a fixed effect for each
cluster.

Part 2.3: Outcome of comparing

statistical tests

A single simulated dataset is shown in Fig-
ure 1. This dataset consists of 200 obser-
vations in 20 clusters. The observations
fall into two categories, group 1 and group

2, with only a single group represented in
each cluster (i.e., case 1 data). In this sim-
ulated dataset, we have specified that there
is no difference between group 1 and
group 2 observations.

We compared group 1 against group 2
observations using the methods described
above (Table 2). We observed that ignor-
ing the clustering (applying the ¢ test or
Wilcoxon test to the individual observa-
tions) would lead to rejection of the null
hypothesis, since the p values are consid-
erably <0.05. Thus, when clustering was
ignored, both the r and Wilcoxon tests re-
ported a significant difference between
group 1 and group 2 data, where in fact no
such difference actually exists. None of the
other methods indicated that the null hy-
pothesis should be rejected. Thus, al-
though the estimated difference between
groups was similar for all of the methods,
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Table 3. Performance of tests in analyzing 10,000 datasets, case 1 data

Proportion of datasets for which null hypothesis is rejected

ttest Wilcoxon ttest Wilcoxon Datta and Satten
Model  (individual observations) ~ (individual observations) ~ (means) (means) LMM  GEE method
1 0.512 0.496 0.047 0.043 0.049 0.079 0.053
2 0.966 0.961 0.688 0.641 0.692 0.772 0.699
3 0.500 0.496 0.031 0.042 0.037 0.067 0.053
4 0.781 0.960 0.359 0.529 0.367 0.448 0.706
5 0.431 0.412 0.041 0.030 0.050 0.144  0.065
6 0.986 0.981 0.723 0.604 0.770 0927 0.806
7 0.405 0.412 0.021 0.029 0.034 0.124 0.065
8 0.892 0.960 0.569 0.568 0.625 0.786 0.735

Table summarizes the results (proportion of datasets for which the null hypothesis is rejected) when clusters contain observations from a single group only;
data were obtained from 10,000 simulated datasets for each of the eight models described in Table 1 and for each of the analysis methods in Table 2. A
significance level of 5% (i.e. p << 0.05) was used to determine whether to reject the null hypothesis in all cases.

Table 4. Performance of tests in analyzing 10000 datasets, case 2 data

Proportion of datasets for which null hypothesis is rejected

ttest Wilcoxon ttest Wilcoxon Datta and Satten
Model  (individual observations) (individual observations) ~ (means) (means) LMM  GEE method
1 0.001 0.002 0.052 0.049 0.051 0.079 0.042
2 0.202 0.197 0.626 0.621 0.718 0.738 0.469
3 0.005 0.002 0.039 0.051 0.047 0.062 0.042
4 0.191 0.783 0.438 0.647 0.446 0526 0.877
5 0.005 0.006 0.048 0.039 0.050 0.116 0.027
6 0.420 0.405 0.709 0.645 0.868 0.895 0.363
7 0.007 0.006 0.028 0.040 0.038 0.091 0.027
8 0.603 0.919 0.730 0.722 0.796 0.843  0.800

Table summarizes the results (proportion of datasets for which the null hypothesis is rejected) when clusters contain observations from both groups; data
were obtained for 10000 simulated datasets for each of the eight models described in Table 1and for each of the analysis methods in Table 2. A significance
level of 5% (i.e. p < 0.05) was used to determine whether to reject the null hypothesis in all cases.

the t and Wilcoxon tests in which cluster-
ing was ignored underestimated the vari-
ability in the data due to the positive
correlation in the data, as shown by the
narrower confidence intervals. These
findings demonstrate the hazardous na-
ture of ignoring data clustering, since the
tests in which clustering was ignored
would report a significant difference be-
tween groups 1 and 2 when no such dif-
ference actually exists.

We next generated 10,000 datasets
from each model detailed in Table 1.
Analyzing such a large number of data-
sets provides a more comprehensive
view of how the tests perform. Results
for case 1 data, where only a single
group is represented in each cluster, are
shown in Table 3, while Table 4 shows
results for case 2, in which clusters con-
tain approximately equal numbers of
observations from each group. For data
generated under models 1, 3, 5, and 7
there is no real difference between the
groups being compared, so that a valid
statistical test should reject the null hy-
pothesis for ~5% of the datasets.

Table 3 shows that for case 1 data, the ¢
and Wilcoxon tests on individual observa-
tions (i.e., ignoring clustering) were far
too liberal, rejecting the null hypothesis
for >40% of the datasets under each null

model. These two tests exhibited high
power when there was a significant differ-
ence between the groups (models 2, 4, 6,
and 8, in which B # 0). However, this is
no consolation, because for a real dataset
we would not know whether the null hy-
pothesis is true or not. Thus, the proba-
bility of recording a “false positive”
result would be much higher in tests
where clustering is simply ignored. By
contrast, Table 4 shows that for case 2
data, the t and Wilcoxon tests on indi-
vidual observations were too conserva-
tive, rejecting the null hypothesis <1%
of the time. These results are consistent
with the mathematical findings pre-
sented in the supplemental Fig. S1,
available at www.jneurosci.org as sup-
plemental material. As the strength of
the intracluster correlation increases,
the effects of ignoring clustering be-
come more pronounced. This is clear
when the type I error is plotted against
the intracluster correlation for case 1
and case 2 data (supplemental Fig. S1,
available at www.jneurosci.org as sup-
plemental material).

We then considered the performance
of statistical methods that do not ignore
clustering: t and Wilcoxon tests on cluster
means, LMM, GEE, and the Datta and
Satten (2005) method (described below).
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Part 2.4: Large datasets, normally
distributed data

Datasets from models 1-4 consist of 20
clusters and a total of 200 observations.
Models 1 and 2 produce normally distrib-
uted data, and we expect that methods de-
signed for normal data should perform
well here. Table 3 shows that for case 1
data the LMM and ¢ test on means, which
are designed for normally distributed
data, perform well. The Datta and Satten
method, although not specifically de-
signed for normal data, also performed
well. These three methods controlled the
type I error at close to 5% and achieved
power of ~0.7. The Wilcoxon test on
means had an acceptable type I error but
was slightly less powerful.

Table 4 shows that for normally dis-
tributed case 2 data, in which clusters con-
tain observations from both groups,
LMM performed best, with type I error of
5% and power >0.7. The paired ¢ and
Wilcoxon tests performed similarly in
terms of type I error but had slightly lower
power. The Datta and Satten method had
lower power in this case.

For both case 1 and case 2 data, GEE
was slightly liberal when analyzing nor-
mally distributed data, with the type I er-
ror rate around 8% (Tables 3 and 4). The
finding that hypothesis tests based on
GEE tend to be too liberal when the num-
ber of clusters is relatively small has been
noted previously (Feng et al., 1996; Mancl
and DeRouen, 2001).

Part 2.5: Large datasets, non-normal data
For non-normal (skewed) data generated
by models 3 and 4, the Datta and Satten
method performed best, achieving the
highest power while maintaining the cor-
rect rate of type I error (Tables 3 and 4).

Part 2.6: Smaller datasets

Datasets from models 5-8 are smaller,
with 8 clusters and a total of 48 observa-
tions. For case 1 data, LMM performed
the best for all model datasets, even for the
non-normal datasets considered (Table
3). While the method of Datta and Satten
also performed well in terms of power, it
was somewhat more liberal with these
smaller datasets than it was with the larger
datasets of models 1-4.

For case 2 data, LMM clearly outper-
formed the other methods when analyzing
normally distributed data (Table 4). It also
performed well for skewed data, with a
slightly conservative type I error but good
power. The Datta and Satten method was
also slightly conservative in this case but had
relatively high power. The paired analyses
on cluster means maintained type I error



10608 - J. Neurosci., August 11,2010 - 30(32):10601-10608

<0.05 but had slightly lower power. GEE
was even more liberal for the smaller data-
sets than for the larger datasets analyzed un-
der Models 1-4.

Part 3: Examining the

intracluster correlation

The strength of the intracluster correla-
tion determines how similar observations
within a given cluster are likely to be to
each other. Thus, a higher intracluster
correlation gives a more pronounced
“clustering effect.”

If the level of correlation itself is of in-
terest, methods for estimating it are avail-
able. There are also methods for testing
whether the correlation is significant, al-
though even a small correlation, which a
test may show to be nonsignificant, can
have important implications for statistical
analysis. We describe these methods in
more detail in supplemental Fig. S2, avail-
able at www.jneurosci.org as supplemen-
tal material.

Part 4: Conclusions—which method

to choose?

Clustered data are common in neuro-
science research. Most studies have
adopted one of two approaches to clus-
tered data. The first of these is to ignore
clustering entirely—an approach that can
have profound implications for the out-
comes of the analysis and can, as we have
shown, sometimes lead to a conclusion
that is incorrect. The consequences of
failing to take clustering into account
can be serious, even for a small amount
of intracluster correlation. The second
approach is reducing the data to a single
measurement per cluster, usually by taking
the mean of each cluster. While entirely
valid, taking the cluster mean also reduces
the amount of information that can be ac-
quired from the dataset, as the data from the
individual measurements in a cluster are re-
duced to one measurement. For the same
reason, it may also be less powerful. We de-
scribe a number of alternative approaches to
the analysis of clustered data and show that
in many cases it is best to use a statistical
method that explicitly accounts for data
clustering.

As with more familiar methods of statis-
tical analysis, the specific tests used depend
very much on the nature of the data. We
note therefore that our conclusions are lim-
ited to the models we investigated and may
vary for other datasets. Our simulation
studies, which are limited to continuous
data, suggest that for large datasets LMM
performs best for normally distributed data,
while the rank-sum method of Datta and

Satten (2005) performs well for non-normal
data. Fixed linear regression/ANOVA can
also be used as long as the data are com-
prised of clusters that contain observations
from both of the groups being compared.
LMM performed well for the smaller data-
sets that we analyzed; however, LMM may
not do well for analyzing all types of skewed
data. In addition, we specifically recom-
mend, as with all statistical analyses, that
larger datasets should always be studied
where possible, since with very small data-
sets there may not exist a statistical method
powerful enough to detect the difference of
interest.

Software

Results were obtained using the R pack-
age (R Development Core Team, 2009).
The standard two-sample ¢ test and Wil-
coxon tests are obtained from the t.test
and wilcox.test functions in the stats
package. LMM was implemented using
the Ime function in package nlme and
GEE using the gee function in the gee
package. The R code to implement the
rank-sum test for clustered data devel-
oped by Datta and Satten (2005) is avail-
able from the authors.

Software for implementing some of the
methods is also available in other packages,
for example the SAS procedures MIXED for
LMM and GENMOD for GEE.
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