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Abstract
Aims/Hypothesis To determine if acute overexpression of
peroxisome proliferator-activated receptor, gamma, coacti-
vator 1 beta (Pgc-1β [also known as Ppargc1b]) in skeletal
muscle improves insulin action in a rodent model of diet-
induced insulin resistance.
Methods Rats were fed either a low-fat or high-fat diet (HFD)
for 4 weeks. In vivo electroporation was used to overexpress
Pgc-1β in the tibialis cranialis (TC) and extensor digitorum
longus (EDL) muscles. Downstream effects of Pgc-1β on
markers of mitochondrial oxidative capacity, oxidative stress
and muscle lipid levels were characterised. Insulin action
was examined ex vivo using intact muscle strips and in vivo
via a hyperinsulinaemic–euglycaemic clamp.
Results Pgc-1β gene expression was increased >100% over
basal levels. The levels of proteins involved in mitochon-
drial function, lipid metabolism and antioxidant defences,

the activity of oxidative enzymes, and substrate oxidative
capacity were all increased inmuscles overexpressingPgc-1β.
In rats fed a HFD, increasing the levels of Pgc-1β partially
ameliorated muscle insulin resistance, in association with
decreased levels of long-chain acyl-CoAs (LCACoAs) and
increased antioxidant defences.
Conclusions Our data show that an increase in Pgc-1β
expression in vivo activates a coordinated subset of genes
that increase mitochondrial substrate oxidation, defend
against oxidative stress and improve lipid-induced insulin
resistance in skeletal muscle.
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gamma, coactivator
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ROS Reactive oxygen species
SOD Superoxide dismutase
TBARS Thiobarbituric acid-reactive substances
TC Tibialis cranialis
UCP Uncoupling protein
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Introduction

Insulin resistance is a key defect underlying obesity, type 2
diabetes and other metabolic diseases. The precise factors
leading to development of insulin resistance are not
completely resolved; however, there is substantial literature
showing that accumulation of lipids within skeletal muscle
is strongly associated with reductions in insulin sensitivity
[1, 2]. In particular, lipid intermediates, such as diacylgy-
cerols (DAG), ceramides and long-chain acyl-CoAs (LCA-
CoAs) are thought to antagonise numerous intracellular
pathways, ultimately leading to insulin resistance [1, 2].
One theory that has recently emerged implicates defective
mitochondrial fatty acid oxidation as a causal factor in the
build-up of lipid intermediates within skeletal muscle, and
the development of insulin resistance. This theory is based
on reports of defects in various markers of mitochondrial
function in insulin-resistant skeletal muscle (reviewed by
Savage et al. and by Kraegen and Cooney [1, 3]). However,
despite the large number of studies suggesting a role for
mitochondrial dysfunction in the development of insulin
resistance, there are also an increasing number of reports
showing a disconnection between these two variables. For
example, we and others have shown that high-fat feeding
enhances mitochondrial oxidative capacity in skeletal
muscle, even though lipid accumulates and insulin resis-
tance develops in this tissue [4, 5]. Furthermore, mice with
genetically induced mitochondrial dysfunction in skeletal
muscle are not insulin resistant, even when challenged with
a high-fat diet (HFD) [6, 7]. By contrast, several studies
have shown that enhancing substrate oxidation in muscle
can reduce intramuscular lipid accumulation and improve
insulin sensitivity [8, 9].

Another factor that has recently been implicated in
the development of insulin resistance is oxidative stress
[10–12]. Several groups, including our own, have demon-
strated in cells and animals that insulin resistance is
associated with excessive production of reactive oxygen
species (ROS), particularly from the mitochondrial respi-
ratory chain [10, 11]. Although the exact mechanism(s)
by which elevated ROS levels cause insulin resistance
are currently unknown, genetic and pharmacological
interventions that attenuate excessive ROS production
have been shown to partially ameliorate insulin resistance
[10–12].

Given that excess lipid accumulation and oxidative stress
are both associated with the pathogenesis of insulin
resistance, strategies that enhance lipid oxidation and/or
increase antioxidant defence capacity under high-fat-fed
conditions should exert favourable effects on insulin
sensitivity. In this regard the peroxisome proliferator-
activated receptor, gamma, coactivator 1 (PGC1) family of
transcriptional coactivators, which includes PGC-1α, PGC-

1β and PGC1-related coactivator 1, are attractive targets.
PGC-1α and PGC-1β have been the most extensively
characterised proteins in this family, and a number of
reports have shown that these two coactivators are both key
regulators of mitochondrial oxidative capacity and the
expression of several key antioxidant enzymes [13–16].
However, although PGC-1α and PGC-1β regulate a large
number of overlapping genes, studies in rodent models and
cell-based systems have also shown distinct effects of these
proteins on a number of metabolic variables such as muscle
fibre type [17, 18], sphingolipid profile [19] and functional
properties of mitochondria [15].

Evidence of a potential role for defective PGC-1
signalling in metabolic disease has come from studies that
show reductions in the expression of PGC-1α (also known
as PPARGC1A) and PGC-1β (also known as PPARGC1B)
in skeletal muscle of participants with insulin resistance
and/or type 2 diabetes [20, 21]. However, studies that have
manipulated the levels of PGC-1 proteins in mice have
yielded unexpected and conflicting results. For example,
skeletal muscle insulin action is not impaired in mice with
whole body or muscle-specific deletion of PGC-1α or loss
of function mutation of PGC-1β, despite these animals
displaying the expected reduction in markers of mitochon-
drial metabolism [16, 22]. Furthermore, mice with muscle-
specific overexpression of PGC-1α display a marked
enhancement of oxidative characteristics in muscle, but
are also insulin resistant owing to excessive fatty acid
delivery to muscle or decreased Glut4 (also known as
Slc2a4) expression [23, 24].

Whereas the above studies do not support a therapeutic
role for activation of PGC-1 signalling, it should be noted
that a number of complex adaptations may occur in mice
owing to lifelong overexpression or ablation of a specific
protein of interest. Indeed recent work from Bonen et al.
has shown that acute overexpression of Pgc-1α in skeletal
muscle of adult rats improves insulin action in both healthy
and insulin-resistant muscles [25, 26]. In this study our aim
was to determine the effect of acute overexpression of the
related coactivator Pgc-1β on markers of mitochondrial
function, oxidative stress and insulin action in muscle of
high-fat-fed rats.

Methods

Animals Male Wistar rats (∼250 g) were used for all
experiments. Animals were obtained from the Animal
Resources Centre (Perth, WA, Australia), and were main-
tained at 22±0.5°C on a 12 h light–dark cycle. Rats were
fed ad libitum for 4 weeks with either a standard rodent
chow diet (∼10% energy from fat; Gordon’s Specialty
Stock Feeds, Yanderra, NSW, Australia), or a HFD (45% of
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energy from fat [lard]) made in-house as described
elsewhere [4]. All experimental procedures were approved
by the Garvan Institute/St Vincent’s Hospital Animal
Experimentation Ethics Committee and were in accordance
with the National Health and Medical Research Council of
Australia Guidelines on Animal Experimentation.

In vivo electrotransfer Specific details of the electrotransfer
procedure have been described previously [8, 27]. Animals
were electroporated 2.5 weeks after commencement of their
respective diets, and were killed 1.5 weeks after electro-
poration, unless otherwise stated. In brief, the murine Pgc-1β
coding sequence [28] was cloned into a muscle-specific
expression vector [27]. Control and test muscles were
pretreated for 2 h with 90 units of hyaluronidase to break
down components of the extracellular matrix, thus improv-
ing transfection efficiency [29]. The construct was resus-
pended in sterile saline (0.9% NaCl, 0.5 mg/ml) and tibialis
cranialis (TC) and extensor digitorum longus (EDL) muscle
received either six or three evenly spaced 50 μl injections,
respectively. TC and EDL muscles from the contralateral
limb received an equal volume of empty vector as a control.
Both legs underwent an electroporation protocol consisting
of one 800 V/cm, 100 ms pulse followed by four 80 V/cm,
100 ms pulses at 1 Hz.

Gene expression analysis RNA was isolated from tissues
using TRIzol reagent (Invitrogen, Mulgrave, VIC, Australia),
according to the manufacturers’ instructions. After DNase
digest, 0.65 μg of total RNA was reverse transcribed and
analysed using a real-time qPCR 7900 system (Applied
Biosystems, Foster City, CA, USA), using the standard curve
method. Pgc-1β expression was detected using primers
designed to cross-react with mouse and rat and relative gene
expression was normalised to cyclophilin as an endogenous
control (primer sequences are shown in the electronic
supplementary material [ESM] Table 1).

Mitochondrial DNA copy number Total DNA was isolated
using a DNeasy kit (Qiagen, Mississauga, ON, USA),
according to the manufacturers’ instructions. Relative
mitochondrial DNA (mtDNA) copy number was deter-
mined by qPCR analysis of the ratio of mitochondrial-
encoded and nuclear-encoded genes. Relative expression
was determined using the qPCR ΔCt standard curve method
using 5 ng of template DNA. The primer pairs used were:
(1) NADH dehydrogenase subunit 5 and solute carrier
family 16 member 1 and (2) mitochondrial D-loop and β-
actin (primer sequences are shown in ESM Table 1).

Western blot analysis Muscle tissue (∼40 mg) was homo-
genised in ice-cold radioimmunoprecipitation assay (RIPA)
buffer with protease inhibitors (50 mmol/l HEPES,

150 mmol/l NaCl, 5 mmol/l EDTA, 1% (wt/vol.) Nonidet
NP-40, 0.5% (wt/vol.) sodium deoxycholate, 0.1% (wt/vol.)
SDS, 10 mmol/l NaF, 1 mmol/l Na3VO4, 1 μg/ml
leupeptin, 100 mg/ml phenylmethylsulfonyl fluoride and
2 mg/ml aprotinin). Lysates were resolved by SDS-PAGE
and immunoblotted with antibodies against PGC-1α
(Chemicon International, Temecula, CA, USA), mitochon-
drial respiratory chain subunits (complex I subunit
NDUFB6, complex II FeS subunit, complex III Core2
subunit, complex V subunit alpha; MS601, Mitosciences,
Eugene, OR, USA), carnitine palmitoyl transferase-1
(CPT-1; Alpha Diagnostic International, San Antonio, TX,
USA), superoxide dismutase 1 and 2 (SOD-1 and SOD-2)
and fatty acid translocase/CD36 (Santa Cruz Biotechnolo-
gy, Santa Cruz, CA, USA), uncoupling protein 3 (UCP3;
Affinity Bioreagents, Golden, CO, USA), glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) and porin (Cell
Signaling Technology, Danvers, MA, USA), acyl-coA
synthetase 1 (ACS1; a gift from P. Watkins at the Kennedy
Krieger Institute, Baltimore, MD, USA), and GLUT4 (a gift
from D. James, Garvan Institute of Medical Research,
Sydney, WA, Australia). Immunolabelled bands were
quantified by densitometry.

Substrate oxidation, mitochondrial respiration and oxida-
tive enzyme activity in TC To examine pyruvate and
palmitate oxidation in control and transfected muscles, a
5% (wt/vol.) homogenate of fresh TC muscle was prepared
in ice-cold homogenising buffer (250 mmol/l sucrose,
10 mmol/l Tris-HCl, 1 mmol/l EDTA, pH 7.4). Fifty
microlitres of the homogenate was incubated in 450 μl
prewarmed (30°C) oxidation medium (100 mmol/l sucrose,
10 mmol/l Tris-HCl, 5 mmol/l KH2PO4, 1 mmol/l MgCl2,
80 mmol/l KCl, 0.2 mmol/l EDTA, 1 mmol/l dithiothreitol,
2 mmol/l ATP, 0.3% fatty-acid free BSA, pH 7.4), supple-
mented with either 2 mmol/l carnitine, 0.05 mmol/l CoA,
0.1 mmol/l malate, 200 μmol/l palmitate, and 74 kBq/ml
[1-14C]palmitic acid (GE Healthcare Life Sciences, Buck-
inghamshire, UK), or 2 mmol/l malate, 5 mmol/l pyruvate,
and 14.8 kBq/ml [14C]pyruvic acid (GE Healthcare).
Palmitate and pyruvate oxidation rates were determined as
described elsewhere [4]. Mitochondria from control and test
TC muscle were isolated as described in Turner et al. [30].
Respiration was measured polarographically using a Clark-
type electrode (Strathkelvin Instruments, Glasgow, UK) at
30°C. The respiration medium contained 225 mmol/l manni-
tol, 75 mmol/l sucrose, 10 mmol/l Tris, 10 mmol/l K2HPO4,
0.1 mmol/l EDTA and 0.3% BSA, pH 7.4, and the substrate
combinations used were 5 mmol/l pyruvate+2 mmol/l
malate, 10 mmol/l succinate+4 μmol/l rotenone and
10 μmol/l palmitoyl-CoA+2 mmol/l L-carnitine+2 mmol/
l malate. State III respiration was initiated by adding
0.2 mmol/l ADP. The activity of citrate synthase (CS) and
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β-hydroxyacyl dehydrogenase (βHAD) were determined in
TC muscle homogenates as previously described [4].

Ex vivo glucose uptake in EDL muscles Control and Pgc-1β
transfected muscles were dissected tendon-to-tendon into
strips, and incubated in warmed (30°C), pregassed (95%
O2:5% CO2, pH 7.4), modified Krebs–Henseleit buffer
containing 5 mmol/l glucose, 10 mmol/l HEPES and 1%
BSA. Following a 30 min preincubation period, muscle
strips were transferred to a new vial containing the above
medium plus 27.7 kBq/ml 2-deoxy[3H]glucose and
18.5 kBq/ml [14C]glucose (GE Healthcare) ± insulin
(1 mU/ml) for 60 min. At the conclusion of the incubation
period, muscle strips were rinsed in saline and dissolved in
1 mol/l KOH at 70°C. The extract was neutralised using
25% perchloric acid, and centrifuged at 13,000×g for 5 min
at 4°C. The counts of phosphorylated deoxy[3H]glucose
from this extract were used to calculate glucose uptake.

Hyperinsulinaemic–euglycaemic clamp For hyperinsulinae-
mic–euglycaemic clamps in rats, double jugular cannulae
were implanted 7 days before experiments. Animals (5 h
fasted) were studied over 2 h in the conscious state (insulin
infusion 0.25 units kg–1 h–1), with a bolus of 2-deoxy[3H]
glucose tracer administered once plasma glucose levels
reached steady state [8, 27]. At the conclusion of the clamp
the TC and EDL muscles were rapidly dissected and freeze-
clamped for determination of glucose uptake [8, 27].

Blood analyses Plasma glucose was determined using an
automated glucose analyser (YSI 2300; YSI, Yellow
Springs, OH, USA). Insulin was assessed using a rat
insulin ELISA (Linco, St Charles, MO, USA).

Lipid analysis Lipids were extracted from muscle samples
using the Folch method [31]. Total lipid extracts were
separated into lipid classes using normal phase liquid
chromatography and measured by evaporative light scatter-
ing detection [32]. The DAG and ceramide fractions were
collected. For quantification of DAGs, the relevant fraction
was infused into the QSTAR quadrupole time of flight mass
spectrometer (Applied Biosystems/MDS Analytical Tech-
nologies, Toronto, ON, Canada), using the chip-based
nanoelectrospray system Nanomate (Advion Biosciences,
Ithaca, NY, USA). Positive electrospray precursor ion
scanning mode was used [33]. Ceramide analysis was
performed using reversed phase HPLC coupled to a triple
quadrupole Quattro Premiere mass spectrometer (Waters,
Milford, MA, USA). Total LCACoAs were measured with
a fluorometric assay, as described by Antinozzi et al. [34].

Analysis of glutathione peroxidase (GPx) activity and lipid
peroxidation GPx activity was measured in TC muscle

homogenates using the procedure described by Flohé and
Günzler [35]. Oxidative modification of muscle lipids was
determined spectrophotometrically as the amount of thio-
barbituric acid-reactive substances (TBARS) formed [36].
Briefly, muscle was homogenised in RIPA buffer (described
above) and proteins were precipitated with 10% trichloro-
acetic acid. Thiobarbituric acid (0.67% wt/vol.) was added
to the supernatant fraction and samples were assayed at
532 nm after 10 min incubation at 100°C.

Statistics All data are reported as means ± SE. Data were
analysed with paired t test or two-way ANOVA. Post hoc
analysis was conducted using a Bonferroni test together,
where appropriate, with paired t test to specifically
determine the effect of electroporation in each group.
Statistical significance was accepted at p<0.05.

Results

Timecourse of Pgc-1β overexpression in electroporated
muscles Pgc-1β gene expression in the TC muscle of
chow-fed animals was increased approximately three-fold
over basal at 4 days post-electroporation (Fig. 1a), and
remained significantly elevated for up to 3 weeks. All
subsequent experiments were conducted within the 8–16 day
range, corresponding to an average increase in Pgc-1β
mRNA of ∼2.5-fold (Fig. 1b). Interestingly, the HFD
alone induced a significant (p<0.05) increase in Pgc-1β
expression, which was further elevated with electroporation
(Fig.1b).

Effect of Pgc-1β overexpression on levels of metabolic
proteins Significant upregulation (12–70%) of a number of
proteins involved in mitochondrial function and lipid
metabolism, including subunits of complex I and complex
II of the mitochondrial respiratory chain, CPT-1, CD36,
ACS and UCP3, was observed in TC muscles overexpress-
ing Pgc-1β, compared with control muscles (Fig. 2a,b).
There was also increased content of another well-known
target of the PGC-1 proteins, GLUT4; however, the level of
porin (an abundant mitochondrial outer membrane protein)
was unchanged as a result of Pgc-1β overexpression
(Fig. 2b). Despite significant increases in a number of
mitochondrial proteins, we observed no difference in
mtDNA content between control and Pgc-1β -overexpress-
ing muscles, as assessed by the ratio of mtDNA to nuclear
DNA using two different primer pairs (1.33±0.16 vs 1.15±
0.26 AU for NADH dehydrogenase subunit 5: solute carrier
family 16, member 1 and 0.97±0.08 vs 0.83±0.04 arbitrary
units for mitochondria D-loop: β-actin for control vs
Pgc-1β-expressing legs, respectively). Importantly, all of
the above effects were specifically the result of increasing
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Pgc-1β expression, as there was no change in the content of
PGC-1α (Fig. 2b).

Oxidative enzyme activity and substrate oxidation rates are
increased in muscles overexpressing Pgc-1β Pgc-1β over-
expression increased (p<0.01) the activity of CS and
βHAD by ∼20% in chow-fed animals (Fig. 3a). Consistent
with our previous findings [4] high-fat feeding increased
the activity of CS (17%) and βHAD (28%) in control
muscles, and Pgc-1β overexpression further enhanced this
by 15% and 25%, respectively (Fig. 3a). To further
elucidate the functional effects of Pgc-1β overexpression,
we first examined pyruvate and palmitate oxidation rates in
TC muscle homogenates. Pgc-1β overexpression increased
the rate of pyruvate oxidation by ∼15% (p<0.01, Fig. 3b),
and palmitate oxidation by ∼25% (p<0.001, Fig. 3c) in

both chow and high-fat-fed animals. In mitochondria
isolated from TC muscles of chow and fat-fed animals,
Pgc-1β overexpression also increased ADP-stimulated
respiration with pyruvate, succinate or palmitoyl-CoA as
substrates, the latter again being above the adaptive
response induced by an HFD (Fig. 3d–f).

Pgc-1β overexpression in muscle ameliorates diet-induced
insulin resistance To determine if Pgc-1β overexpression
in muscle of fat-fed rats improves diet-induced insulin
resistance we examined insulin action under both ex vivo
and in vivo conditions. High-fat feeding increased body
mass and the mass of the epididymal and inguinal fat pads
(Table 1). In EDL muscle strips from chow-fed animals,
Pgc-1β overexpression did not alter the rate of insulin-
stimulated glucose uptake (Fig. 4a). High-fat feeding
induced marked insulin resistance in muscle (41% decrease in
insulin-stimulated glucose uptake, p<0.05 vs chow animals),
whereas in Pgc-1β overexpressing EDL muscles from high-
fat-fed animals, insulin action was almost completely restored
to that observed in chow-fed animals (Fig. 4a).

To assess the effect of Pgc-1β overexpression on insulin
action in vivo, hyperinsulinaemic–euglycaemic clamps
were performed in chow- and high-fat-fed animals. Whole
body insulin resistance in the high-fat-fed animals was
evident as a reduction in the glucose infusion rate during
the clamp (Table 1). Insulin-stimulated glucose uptake was
reduced in both the TC (–20%, p<0.05) and EDL (–28%,
p<0.01) of high-fat-fed animals (Fig. 4b,c). In both muscle
types, overexpression of Pgc-1β restored glucose uptake
rates to levels comparable to the control leg of chow-fed
animals (Fig. 4b,c).

Effect of Pgc-1β overexpression on muscle lipid levels High-
fat feeding increased the level of LCACoAs (+130%),
ceramides (+25%) and DAG (+40%) in muscle (Fig. 5).
Pgc-1β overexpression did not attenuate the HFD-induced
increase in ceramide or DAG levels, but almost completely
reduced LCACoA levels back to that observed in chow-fed
animals (Fig. 5a).

Effect of Pgc-1β overexpression on antioxidant defences Pgc-
1β overexpression increased the protein content of the
antioxidant enzymes, SOD-1 and SOD-2 (Fig. 6a) and also
increased (p<0.01) the activity of GPx (1.72±0.10 vs
2.15±0.13 μmol min–1 g–1, control vs Pgc-1β, n=11). As
an index of oxidative damage we measured the level of
lipid peroxidation (via TBARS) in muscle. High-fat feeding
increased lipid peroxidation by ∼25% in TC muscles from
control legs and, consistent with an enhanced capacity for
ROS detoxification, Pgc-1β overexpression significantly
reduced lipid peroxidation in both chow and fat-fed animals
(Fig. 6c).
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Discussion

The PGC-1 family of transcriptional coactivators are now
recognised as important potential therapeutic targets for the
treatment of many diseases [14, 37, 38]. In the present

study we investigated whether acute, targeted overexpres-
sion of the transcriptional coactivator Pgc-1β could impact
upon insulin action in rat skeletal muscle. We observed that
overexpression of Pgc-1β was able to drive a transcription-
al programme that increased the capacity for mitochondrial
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substrate oxidation, improved antioxidant defences and
partially protected against HFD-induced insulin resistance.

Gain- and loss-of-function studies have shown that PGC-
1β regulates the expression of genes involved in mitochon-

drial function and lipid metabolism [15, 16, 38, 39].
However, although much is known about the physiological
stimuli that increase PGC-1α content in muscle, the in vivo
regulation of PGC-1β is less well understood. Indeed, there
is substantial disparity in the literature in this regard, with
some studies reporting no alterations in PGC-1β levels with
denervation, exercise or obesity [40, 41], whereas others
have shown two- to threefold increases in PGC-1β
expression in muscle with diverse stimuli, including insulin
stimulation [21], exercise [42], bariatric surgery [43],
dietary restriction [44] and treatment with the adipokine
apelin [45]. In the present study we also observed a twofold
increase in Pgc-1β in rat TC muscle following 4 weeks of
an HFD. Acute overexpression of Pgc-1β by ∼2.5 fold
resulted in increased content of mitochondrial respiratory
chain subunits and proteins involved in lipid metabolism
(e.g. CPT-1 and CD36). Furthermore, oxidative enzyme
activity and the capacity to oxidise several different
substrates were also enhanced in muscle overexpressing
Pgc-1β. Interestingly, the Pgc-1β-induced enhancement in
mitochondrial oxidative capacity occurred in the absence of
any change in mtDNA and porin, suggesting that Pgc-1β
interacts with a specific subset of transcription factors in
vivo that, when activated, drive only part of the mitochon-
drial biogenic programme.

An enhanced capacity for mitochondrial substrate oxi-
dation in skeletal muscle has been linked with improved
insulin action [8, 9, 25, 26]. In the current study, rats fed an
HFD displayed clear insulin resistance at the whole-body
and muscle level. In both ex vivo assays in isolated EDL
strips and in TC and EDL muscles during a hyper-
insulinaemic–euglycaemic clamp, Pgc-1β was able to
partially ameliorate this diet-induced insulin resistance.
The observed improvements in insulin sensitivity are
important considering that Pgc-1β was overexpressed only
for 1–2 weeks of the 4-week high-fat feeding regime and
with the electroporation technique, only ∼50% of muscle
fibres within a given muscle are transfected [27]. Animals
with whole body overexpression of PGC-1β display
increased oxidative capacity in muscle and improved
insulin sensitivity compared with wild-type controls [38].
However, two independent groups have shown that, despite
improvements in mitochondrial capacity, mice with muscle-
specific overexpression of PGC-1α exhibit insulin resis-
tance, owing either to unexpected reductions in GLUT4
content or excessive lipid uptake into muscle [23, 24].
Whereas the findings from these transgenic animals have
been disappointing, it appears that more modest increases in
the level of the PGC-1 coactivators (e.g. two- to threefold
in the current study and [25, 26]) avoid many of the
unanticipated consequences of excessive transgene expres-
sion and result in beneficial effects with regards to insulin
sensitivity.
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Fig. 4 Glucose uptake in control and Pgc-1β-overexpressing TC and
EDL muscles. (a) Glucose uptake in EDL muscle strips under basal and
insulin-stimulated conditions, data are means±SE of n=9 high-fat-fed, n=
4 chow-fed animals. *p<0.01 vs corresponding basal sample. Grey and
black bars represent basal and insulin-stimulated conditions, respectively.
Glucose uptake in (b) TC and (c) EDL muscles during a hyper-
insulinaemic–euglycaemic clamp. The dotted line represents the average
glucose uptake value in muscle from chow-fed animals. Data are means±SE
for n=10–15 animals. †p<0.05 vs control HFD muscle. Grey and black
bars represent control and Pgc-1β-overexpressing muscles, respectively

Table 1 Characteristics of rats fed a chow or HFD

Variable Chow High-fat

Body mass (g) 294±6 316±6*

Epididymal fat (g) 0.8±0.1 1.5±0.1*

Inguinal fat (g) 0.9±0.1 1.7±0.1*

Plasma glucose (mmol/l) 7.7±0.2 7.5±0.2

Fasting plasma insulin (pmol/l) 285.0±32.2 347.7±27.4

Glucose infusion rate (mg kg–1 min–1) 32.5±1.8 25.6±1.1*

Data are means ± SE, n=14–15

*p<0.05, significantly different from chow
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Numerous studies have demonstrated that insulin resis-
tance is linked with increased amounts of various deleteri-
ous lipid intermediates within skeletal muscle [1, 2].
Accumulation of LCACoA in muscle has been observed
in association with insulin resistance in high-fat fed rats
[46] and in rats and humans infused with lipid [47, 48].
LCACoA have been shown to inhibit hexokinase activity,

thereby impairing glucose phosphorylation and reducing
glucose uptake [49]. In the current study, high-fat feeding
induced a greater than twofold increase in the levels of
LCACoAwithin muscle and in Pgc-1β -transfected muscles
from HFD animals, these levels were returned to levels
close to that observed in chow controls. This reduction in
LCACoA would potentially relieve the allosteric inhibition
of hexokinase [49] and enhance insulin-stimulated glucose
uptake; however, such changes in hexokinase activity
cannot be directly verified by ex vivo measurements once
the allosteric regulator (i.e. LCACoA) has been diluted by
homogenisation. LCACoA levels could be potentially
reduced if fatty acid uptake and/or activation were
decreased; however, this is unlikely to be the reason for
the current findings, as Pgc-1β overexpression increased
the expression of the fatty acid transport protein CD36 and
the enzyme responsible for fatty acid activation, ACS1.
One plausible explanation for why Pgc-1β overexpression
decreases LCACoA levels is that the observed enhancement
of mitochondrial fatty acid capacity, above that induced by a
HFD, leads to an increased channelling of lipid into
oxidative pathways, thereby lowering the LCACoA pool.

Interestingly, although Pgc-1β overexpression resulted
in a marked reduction in LCACoA levels in muscle from
fat-fed animals, it did not prevent the diet-induced increases
in ceramide and DAG levels. Recent work has suggested
that in the context of insulin resistance, it is not only the
total level of intracellular lipid intermediates that is
important, but also their subcellular localisation. An
increased proportion of reactive lipid species at the
membrane is associated with insulin resistance and manip-
ulations that reduce the level of these lipids improve insulin
action [8, 24]. Whether Pgc-1β-induced alterations in the
subcellular distribution of ceramides and DAG plays any
role in the beneficial effects of this transcriptional coac-
tivator on insulin action remains to be determined.

In addition to its ability to upregulate mitochondrial
oxidative capacity, and reduce LCACoA levels, part of the
beneficial effect of Pgc-1β on insulin action is probably
related to an increase in antioxidant defences. A complex
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Fig. 6 Markers of oxidative stress in Pgc-1β overexpressing
TC muscle. (a) Representative immunoblots of antioxidant proteins
SOD-1 and SOD-2 in control (C) and Pgc-1β test (T) muscles, and (b)
densitometric quantification of proteins; **p<0.01 control vs test leg,
n=9–12. (c) TBARS in TC muscles of chow- and high-fat-fed rats
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effect of diet, †p<0.05 main effect of Pgc-1β. *p<0.05 specific effect
of electroporation (control vs Pgc-1β). Grey and black bars represent
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relationship exists between ROS production and insulin
action. Intermittent, low-level ROS production has been
reported to enhance insulin action via improvements in
insulin signal transduction [50]. However, other recent
studies have shown that excessive or persistent generation
of ROS in mitochondria contributes to the pathogenesis of
insulin resistance [10, 11]. The exact mechanism(s) by
which excess ROS antagonises insulin action is currently
unknown; however, this effect appears to be independent of
changes in the canonical PI3K/Akt insulin-signalling
pathway [10]. Importantly, it has been shown that pharma-
cological and genetic manipulations that alleviate oxidative
stress lead to improvements in insulin sensitivity [10–12].
PGC-1α and PGC-1β have both been shown to regulate the
production of a range of antioxidant proteins in a variety of
cells [14–16]. Consistent with these reports, we observed a
robust increase in the protein levels of SOD-1 and SOD-2
and in glutathione peroxidase activity in response to Pgc-1β
overexpression in muscle. Importantly, this increase in
antioxidant defence capacity resulting from Pgc-1β over-
expression reduced the level of oxidative damage, as
evidenced by decreased lipid peroxidation (TBARS) levels.
Therefore, it is possible that increased detoxification of
ROS is an additional mechanism that partially contributes
to the protective effect of Pgc-1β against HFD-induced
insulin resistance.

In summary, we have shown that overexpression of Pgc-
1β is sufficient to improve diet-induced insulin resistance in
skeletal muscle. This effect was associated with increased
mitochondrial oxidative capacity, decreased levels of
LCACoA and reduced oxidative stress. Our findings
suggest agents that can activate Pgc-1β-dependent path-
ways in muscle may have therapeutic potential for the
treatment of insulin resistance and type 2 diabetes.
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