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Abstract
Aims/hypothesis Proinflammatory cytokines contribute to
beta cell destruction in type 1 diabetes, but the mechanisms
are incompletely understood. The aim of the current study
was to address the role of the protein kinase C (PKC)
isoform PKCδ, a diverse regulator of cell death, in
cytokine-stimulated apoptosis in primary beta cells.
Methods Islets isolated from wild-type or Prkcd−/− mice

were treated with IL-1β, TNF-α and IFNγ and assayed for
apoptosis, nitric oxide (NO) generation and insulin secre-
tion. Activation of signalling pathways, apoptosis and
endoplasmic reticulum (ER) stress were determined by
immunoblotting. Stabilisation of mRNA transcripts was
measured by RT-PCR following transcriptional arrest. Mice
were injected with multiple low doses of streptozotocin
(MLD-STZ) and fasting blood glucose monitored.
Results Deletion of Prkcd inhibited apoptosis and NO
generation in islets stimulated ex vivo with cytokines. It
also delayed the onset of hyperglycaemia in MLD-STZ-
treated mice. Activation of ERK, p38, JNK, AKT1, the ER
stress markers DDIT3 and phospho-EIF2α and the intrinsic
apoptotic markers BCL2 and MCL1 was not different
between genotypes. However, deletion of Prkcd destabi-
lised mRNA transcripts for Nos2, and for multiple
components of the toll-like receptor 2 (TLR2) signalling
complex, which resulted in disrupted TLR2 signalling.
Conclusions/interpretation Loss of PKCδ partially protects
against hyperglycaemia in the MLD-STZ model in vivo, and
against cytokine-mediated apoptosis in vitro. This is accom-
panied by reduced NO generation and destabilisation of Nos2
and components of the TLR2 signalling pathway. The results
highlight a mechanism for regulating proinflammatory gene
expression in beta cells independently of transcription.
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EIF2AK3 Eukaryotic translation initiation factor
2 alpha kinase 3

ER Endoplasmic reticulum
ERK Extracellular signal regulated kinase
GSIS Glucose-stimulated insulin secretion
JNK c-Jun N-terminal kinase
PKC Protein kinase C
MAPK Mitogen-activated protein kinase
MCL1 Myeloid cell leukemia sequence 1
MLD-STZ Multiple low dose streptozotocin
NFκB Nuclear factor kappa B
NO Nitric oxide
Nos2 Inducible nitric oxide synthase
P38 p38 MAPK
STZ Streptozotocin
TLR Toll-like receptor

Introduction

Apoptotic destruction of pancreatic beta cells as part of an
auto-inflammatory response is the hallmark of type 1
diabetes [1–4]. The release of proinflammatory cytokines,
such as IL-1β, TNF-α and IFNγ from the monocytic
infiltrate is a key feature of the progression of the disease
[1–4]. IL-1β signalling in beta cells includes activation of
various mitogen-activated protein kinase (MAPK) cas-
cades. Another important apoptotic pathway is mediated
by nuclear factor kappa B (NFκB), which leads to increased
expression of inducible nitric oxide synthase (NOS2),
thereby enhancing generation of the free radical nitric
oxide (NO). The latter is a key, but not sole, mediator of
beta cell apoptosis following exposure to proinflammatory
cytokines, and in experimental models of type 1 diabetes
[1–4].

Another signalling pathway initiated by IL-1β involves
activation of protein kinase C (PKC) [5]. This comprises a
family of serine/threonine protein kinases consisting of 11
isoforms with differing tissue distributions and functions, as
well as varying co-factor requirements and substrates [6].
Work from our laboratory established that the PKCδ
isoform is activated following stimulation of INS-1 insuli-
noma cells with IL-1β, and that this activation contributed
to cytokine-mediated apoptosis [7, 8]. In this model, PKCδ
regulated Nos2 at post-transcriptional level, by actively
stabilising Nos2 mRNA, thereby increasing its half-life [7].
However, PKCδ is now widely recognised as a component
of apoptotic signalling pathways triggered by diverse
cytotoxic agents, including those such as ultraviolet
radiation and DNA-damaging agents, in which NOS2
induction does not play a role. In these instances, PKCδ
can impinge upon substrates in the distal steps of the

apoptotic cascade [9–11]. Furthermore, a recent study has
demonstrated a requirement for PKCδ in mediating beta
cell apoptosis in vivo in response to high-fat feeding, a
situation not thought to involve NO generation [12]. To
date, however, a role for PKCδ in animal models of type 1
diabetes has not been tested.

Another potential role of PKCδ is in linking endoplas-
mic reticulum (ER) stress to c-Jun N-terminal kinase (JNK)
signalling and thus apoptosis [13]. This stress response is
activated in beta cells by cytotoxic cytokines [14–18],
potentially as a result of depletion of Ca2+ from the lumen
of the ER, such that the ability of the latter to fold and
export secretory protein is compromised [19]. Signalling
molecules in the ER membrane sense the accumulation of
unfolded proteins and initiate an adaptive response.
However, if this fails to rebalance the folding capacity of
the ER, apoptosis is activated [20, 21]. In beta cells, the
best characterised of the transmembrane ER stress sensors
is the protein kinase, eukaryotic translation initiation factor
2 alpha kinase 3 (EIF2AK3 also known as PERK), which
(among other effects) is mainly responsible for transcrip-
tional upregulation of the pro-apoptotic transcription factor,
DNA-damage-inducible transcript 3 (DDIT3, also known
as CHOP).

The goal of the current study was to determine whether
activation of PKCδ by cytokines contributes to cytokine-
mediated apoptosis in primary beta cells and to investigate
the underlying mechanisms, with particular reference to ER
stress and mRNA stabilisation of inflammatory genes such
as Nos2. We also sought to test the potential involvement of
PKCδ in a mouse model of type 1 diabetes.

Methods

Mice Prkcd null mice were generated by insertion of a
LacZ/neo cassette into the first transcribed exon of the
gene, as previously described [22, 23]. Routine genotyping
was carried out by PCR analysis of tail-tip DNA, using a
forward primer corresponding to a 5′ untranslated region of
the Prkcd locus and reverse primers corresponding to either
exon 1 (wild type)—or the Lac-Neo insert (see Electronic
supplementary material [ESM] Table 1). Ethics approval for
mouse studies was granted by the Garvan Institute/St
Vincent’s Hospital Animal Ethics Committee. Mice were
maintained on a hybrid 129/SV C57BL/6 background,
using Prkcd heterozygous breeding pairs. They were fed a
standard chow diet and had free access to drinking water.
Age-matched wild-type and Prkcd−/− littermates (8–
12 weeks old) were used for experiments.

MLD-STZ treatment A stock solution of 4 mg/ml strepto-
zotocin (STZ) was prepared in 0.1 mol/l sodium citrate
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(pH 4.5) immediately before usage. After fasting for 4–6 h,
mice were injected i.p. with 40 mg/kg STZ once a day for
5 days. On days 2, 5, 9, 11, 12, 16 and 24, food was
withdrawn in the morning and blood withdrawn from the
tail vein 6 h later for analysis of blood glucose. In some
instances, mice were killed at day 11, and pancreases were
removed and fixed in 4% paraformaldehyde for immuno-
histochemistry.

Islet isolation, cytokine treatment and insulin secretion
assays Islets were isolated by pancreatic digestion, and
purified using a Ficoll-paque gradient (GE Healthcare,
Chalfont St Giles, UK) before overnight culture in RPMI
1640 with 11 mmol/l glucose and 10% FCS (Invitrogen,
Mulgrave, Vic, Australia). A cytokine mixture comprising
IL-1β, TNF-α and IFNγ was added at concentrations and
for times indicated in the text. In some studies the
selective TLR2 agonist Pam2CSK4 (Invivogen, San
Diego, CA, USA) was added at 1 μg/ml for 30 min. For
insulin secretion assays, islets were preincubated for 1 h in
HEPES-buffered KRB containing 0.1% BSA and 2 mmol/
l glucose. Batches of five islets were incubated at 37°C for
1 h in 130 μl KRB containing 0.1% BSA and 2 mmol/
l glucose (basal), supplemented with glucose (20 mmol/l),
or KCl (25 mmol/l) as indicated in the text. Insulin release
was determined by RIA (Linco/Millipore, Billerica, MA,
USA).

Apoptosis and NO assays Apoptosis was measured using
an ELISA kit (Roche Applied Science, Castle Hill, NSW,
Australia) which quantifies the apoptotic mono- and
oligonucleosomes in a sample. Islets (40–80) were lysed
in 0.2 ml of the supplied lysis buffer, incubated for 30 min
at room temperature, and the lysate was spun at 200×g for
10 min [14]. The assay was performed using 20 μl of the
supernatant fraction in the ELISA according to the
manufacturer’s instructions. NO was assayed using the
Greiss reaction as previously described [7] using a 0.1 ml
aliquot of the islet culture medium.

Western blotting Islets were washed, lysed and protein
content determined by bicinchoninic acid assay (Pierce/
Thermo Scientific, Rockford, IL, USA). Fifteenmicrograms
of protein was resolved on a 7% SDS-PAGE gel (Invi-
trogen) before transfer to polyvinylidene fluoride mem-
branes. Membranes were blocked with milk and probed
with the following antibodies for 2 h at room temperature:
anti-PKCα (610108) and anti-PKCε (610086; BD bio-
sciences, San Jose, CA, USA); anti-PKCβ (SC209), anti-
PKCδ (SC213), anti-PKCζ (SC216), anti-DDIT3/CHOP
(SC575), anti-IκBβ (SC945), anti-Mcl1 (SC819), anti-
NOS2 (SC651) and anti-14-3-3β (SC1657; Santa Cruz
Biotechnology, Santa Cruz, CA, USA); Anti-BCL2 (2876),

anti-phospho-JNK (Thr183/Tyr185, 9251), anti-phospho-
p44/42 MAPK (Thr202/Tyr204, 4377), anti-phospho-
AKT1 (S473, 9271), anti-phospho-p38 MAPK (Thr180/
Tyr182, 9211) and anti-phospho-EIF2AK3/PERK (Thr980,
3179; Cell Signaling Technology, Danvers, MA, USA);
anti-α-tubulin (T90267) and anti-β-actin (Sigma, St Louis,
MI, USA) and anti-rabbit or anti-mouse horseradish
peroxidase-conjugated secondary antibodies (Jackson
ImmunoResearch Laboratories, West Grove, PA, USA).
Following chemiluminescent detection, densitometry was
performed using ImageJ1.38q (NIH, Bethesda, MD, USA).

Quantitative PCR and mRNA stabilisation Islets were
exposed to 400 U/ml IL-1β for 6 h, and then treated with
1 μmol/l actinomycin D for times as indicated. RNA was
extracted and RT-PCR was carried out as previously
described using primers as listed in ESM Table 1 for
Nos2, β-actin (Actb), and Ddit3. Alternatively, cDNA
derived from islets before and 3 h after actinomycin D
was applied to a PCR array containing 84 inflammation
genes (SABiosciences, Frederick, MD, USA), RT-PCR was
performed using an ABI PRISM7900 HT instrument
(Applied Biosystems, CA, USA) and data were analysed
according to the manufacturer’s instructions. Gene expres-
sion was normalised to that of the mean of four house-
keeping genes: Gusb, Hprt1, Hsp90ab1 and Gapdh.

Statistics Statistics were performed using GraphPad Prism5
(Graphpad Software, La Jolla, CA, USA) or Excel (Micro-
soft, Redmond, WA, USA) software. Paired and unpaired t
tests and two-way ANOVA were performed as appropriate.
A p value of <0.05 was regarded as significant.

Results

Pancreatic islets from Prkcd−/− mice are deleted in PKCδ
without compensation from other PKC isoforms Mice
genetically deleted in Prkcd have been widely used to
determine the function of this PKC isoform in multiple cell
types [22–24]. Islets isolated from these animals showed no
detectable expression of PKCδ in contrast to wild-type
islets (Fig. 1a). Importantly, expression of other PKC
isoforms was not altered in the absence of PKCδ (Fig. 1b, c).

Deletion of PKCδ partially protects against apoptosis due
to cytokines, but does not alter glucose-stimulated insulin
secretion Because of the widely reported pro-apoptotic role
of PKCδ, we first compared the sensitivity of wild-type and
Prkcd−/− islets ex vivo to a cytokine mixture, or the beta
cell toxin STZ. As shown in Fig. 2a, cytokines markedly
stimulated apoptosis in wild-type islets, but this was

382 Diabetologia (2011) 54:380–389



inhibited >30% in the Prkcd null islets. By contrast, STZ-
induced apoptosis was not affected by Prkcd deletion.
Because cytokines impact on beta cell function as well as
mass [25, 26], we then investigated the role of PKCδ in the
inhibition of insulin secretion (Fig. 2b). Treatment of wild-
type islets with cytokines enhanced basal secretion, and
abolished the stimulation due to either 20 mmol/l glucose
or 25 mmol/l KCl. Deletion of Prkcd did not alter glucose-
stimulated insulin secretion (GSIS) in the absence of
cytokines, nor did it modulate the effects of cytokines.
Insulin contents were also unaltered between wild-type and
Prkcd−/− islets under these conditions (results not shown).

Proximal cytokine signalling pathways in pancreatic islets
are unaltered by deletion of Prkcd To address the mecha-
nism underlying the protection against apoptosis due to
deletion of Prkcd, we first investigated MAPK signalling.
These pathways are important in cytokine-mediated apo-
ptosis in beta cells [27, 28], and are influenced by PKCδ in
other cell types [29, 30]. JNK phosphorylation was robustly
stimulated by cytokines, without any apparent differences
between wild-type and Prkcd−/− islets (Fig. 3a). As
previously demonstrated, extracellular signal regulated
kinase (ERK) phosphorylation tended to decrease with
cytokine treatment [31], and there was a trend (albeit
nonsignificant) toward further reduction in the absence of
Prkcd. Basal phosphorylation of p38 MAPK (p38) was

enhanced by Prkcd deletion (p=0.051), but the stimulated
response was similar between the two groups (Fig. 3b).
Likewise, the degradation of IκBα and IκBβ, which is
integral to the activation of NFκB signalling, was similar
following stimulation of islets from both wild-type and
PKCδ null islets (Fig. 3b and results not shown). Thymoma
viral proto-oncogene 1 (AKT1) is also a major regulator of
beta cell survival [31, 32] but its activation, as measured by
S-473 phosphorylation, was unaltered by either cytokines
or Prkcd deletion.

Cytokine-stimulated ER stress is not modulated by Prkcd
deletion DDIT3/CHOP is a transcription factor that serves
as a major link between ER stress and apoptosis in beta
cells [20, 33]. Although greatly induced over 24 h by
cytokines in wild-type islets, this was not obviously
affected by deletion of Prkcd at either the protein (Fig. 4)
or mRNA level (results not shown). Phosphorylation of
EIF2A3/PERK is an unequivocal marker of ER stress [20].
Its stimulation by approximately fourfold in response to
cytokines was not significantly different between wild-type
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and Prkcd−/− islets (Fig. 4). In some cell types PKCδ has
been reported to promote degradation of myeloid cell
leukemia sequence 1 (MCL1) [34], a BH3-only protein
that negatively regulates the intrinsic mitochondrial path-
way. Although cytokine treatment tended to increase MCL1
protein in islets, this effect was similar in both wild-type
and PKCδ−/− islets (Fig. 4). As expected, levels of another
BH3-only protein, B-cell leukemia/lymphoma 2 (BCL2),
tended to decrease with cytokine exposure, but in a manner
independent of PKCδ expression [35].

PKCδ contributes to Nos2 mRNA stabilisation Generation
of NO was increased more than fourfold in medium from
wild-type islets stimulated with cytokines for 24 h. This
was significantly reduced to threefold in Prkcd−/− islets
(Fig. 5a). Correspondingly, we also observed a significant
reduction in NOS2 protein in cytokine-stimulated Prkcd−/−

islets vs wild-type islets (Fig. 5b). This is reminiscent of
our previous findings using clonal beta cells in which
the function of PKCδ was reciprocally modulated by
overexpression of wild-type and kinase-dead PKCδ
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adenoviruses [7]. In that instance we observed a partial
requirement for PKCδ activation in the stabilisation of
Nos2 mRNA. Consistent with those findings we now
demonstrate that Nos2 mRNA decayed from its post-
stimulation peak more rapidly in Prkcd−/− than wild-type
mice (Fig. 5c). This corresponded to an approximate 50%
decrease in the half-life from 2.8 to 1.4 h (Fig. 5d).

PKCδ post-transcriptionally regulates multiple mRNA tran-
scripts in islets PKCδ is known to regulate transcripts in
addition to Nos2 in non beta cells, but to our knowledge
this has only ever been assessed on a candidate-by-
candidate basis [36, 37]. As a more comprehensive
approach we used an RT-PCR array of 84 inflammatory
genes for an unbiased screen of genes whose stability in
beta cells might be influenced by loss of Prkcd. As
expected, treatment for 3 h with actinomycin D tended to
reduce expression of most genes, of which 33 were
decreased significantly in either wild-type or Prkcd−/− islets
(ESM Table 2). We next compared the change in gene
expression following actinomycin D treatment between
wild-type and Prkcd−/− islets and identified 13 gene

transcripts that were significantly differentially regulated
by genotype (ESM Table 2). Loss of Prkcd was associated
with both increases and decreases in mRNA abundance
(ESM Table 2). While this might point to an unexpected
role for PKCδ in destabilising some transcripts, generally
these transcripts did not decrease at all in the Prkcd−/− islets
following addition of actinomycin D, and so these results
should be viewed with caution. Therefore we chose to focus
on the genes differentially regulated between the genotypes
that also decreased in abundance following actinomycin D
treatment in both genotypes, leaving us with six gene
candidates for regulation by PKCδ (Fig. 6a). Although further
experiments will be needed to validate these candidates, we
propose that they are stabilised by PKCδ in wild-type islets.
One of these genes is Myd88, a signalling partner of the IL-1
receptor, which itself appeared to be regulated by PKCδ.
However, MYD88 also participates in signalling down-
stream of toll-like receptors (TLRs). Interestingly, there was
also evidence of regulated expression of one of these
receptors, Tlr2, along with Tollip, another component in this
receptor/signalling complex. Several other genes were also
decreased, albeit not significantly in the absence of Prkcd
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(ESM Table 2). These might also prove interesting candi-
dates for further investigation, given that they include Nos2
(Fig. 6a), whose regulation by PKCδ has already been
validated in more sensitive assays (Fig. 5c).

TLR2 signalling is inhibited by deletion of Prkcd A role for
PKCδ in regulating expression of components of the TLR2
signalling complex might be expected to impact on
signalling downstream of that receptor. We tested this
directly using the specific TLR2 agonist Pam2CSK4. As
shown in Fig. 6b, this compound resulted in large fold
increases in the phosphorylation of JNK, ERK and p38 in
wild-type islets. In all instances these responses were less
pronounced in islets deleted in Prkcd, and this difference
attained statistical significance in the case of JNK and ERK.

Mice deleted in Prkcd are partially protected in an
autoimmune model of beta cell destruction Our current
and previous data using primary islets and cell lines,
respectively, suggested a role for PKCδ in beta cell death
triggered by cytokines. We now sought to confirm the
relevance of these findings in vivo. Mice were therefore
injected with MLD-STZ, which leads to an immune-
mediated destruction of pancreatic beta cells, and therefore
represents a widely employed model of type 1 diabetes [38,
39]. We initially established that there was no difference in
body weight in the mice used in these experiments (24.6±
1.2 g, n=11 for wild-type, and 25.5±0.6 g, n=14 for
Prkcd−/−) at day 24 after initial STZ injection. As shown in
Fig. 7a, however, wild-type mice subjected to this protocol
displayed a time-dependent increase in fasting blood glucose
over the period of the study. This was significantly elevated by
day 5 (p<0.01) compared with the blood glucose in mice
before the STZ injections. By contrast, blood glucose was not
significantly increased in the Prkcd null mice until day 11 (p<
0.005) of the treatment, and remained lower than the wild-
type values from day 9 to day 24. Expression of these same
data in terms of the percentage of mice displaying a fasting
blood glucose >10 mmol/l (Fig. 7b) reveals that more than
25% of both wild-type and Prkcd−/− mice attained this
threshold within 11–12 days. By 24 days, more than 80%
of the wild-type animals were displaying a fasted blood
glucose >10 mmol/l, compared with just over half of the
Prkcd−/− mice. This might suggest that deletion of Prkcd
slows the progression, but not the initiation, of beta cell
destruction.

Discussion

PKCδ is a major mediator of diverse forms of apoptosis in
many cell types [9–11]. Its role in beta cells, however, has
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chiefly been addressed in the context of regulation of GSIS,
which has proved controversial [40–42]. In our hands,
functional inhibition of PKCδ by overexpression of a
kinase-dead mutant of the enzyme in isolated rat islets
using adenovirus was without effect on GSIS [40].
Moreover, overexpression of a similar construct specifically
in beta cells of transgenic mice also failed to demonstrate a
major role in regulating secretion [12]. By contrast, a partial
requirement for PKCδ in GSIS was reported using islets
from Prkcd knockout mice [43]. The results shown here,
using a different knockout model, are in keeping with the
results of the kinase-dead approach, suggesting that PKCδ
plays little role in GSIS. We also demonstrate for the first
time that activation of PKCδ does not appear to be involved
in the inhibition of insulin secretion that occurs following
exposure to cytokines.

As a member of the novel subgroup of PKC isoforms,
PKCδ is traditionally activated in receptor signalling
cascades by diacylglycerol, which is generated in turn from
the breakdown of phosphoinositides by phospholipase C
[6]. The best characterised function of PKCδ is as a positive
regulator of apoptosis, but the underlying mechanisms are

complex and diverse [9–11]. We now show that loss of
PKCδ protects against beta cell death in response to
cytokines but not STZ. These results point to a role for
PKCδ specifically in cytokine-stimulated apoptosis, as STZ
acts via chemical disruption of DNA and non-enzymatic
generation of NO in vitro [44]. Note that this is different
from its mode of action in vivo, where multiple low doses
of STZ are thought to trigger an autoimmune attack on beta
cells [38, 39]. Our current results are therefore consistent
with previous data showing that cytokines, especially IL-
1, activate the phospholipase C pathway in beta cells [5],
and we previously provided evidence that PKCδ serves as
a component of the downstream signalling cascade [7].
The present study, however, strongly supports the argu-
ment against a major involvement of PKCδ as an upstream
component in the ERK, JNK and p38 pathways that are
activated by cytokines and implicated in beta cell
apoptosis.

Work from several laboratories has demonstrated that
cytokines also induce ER stress in beta cells [14–18].
However, the extent to which this contributes to apoptosis
under these conditions remains to be resolved. We favour
the view that, at least in vitro, ER stress makes less of a
contribution to beta cell apoptosis in response to cytokines
than it does with other cytotoxic stimuli such as saturated
fatty acids [14]. Here we demonstrate that induction of the
ER stress markers phospho-EIF2A3 and DDIT3 by cytokines
is not altered by deletion of Prkcd, even though there was a
protection against apoptosis. This would suggest that PKCδ
acts either independently of ER stress, or downstream of it.
Because we observed modulation of NO generation, but not
ER stress, our results would tend to support the argument
against the view that NO serves as an upstream trigger of ER
stress in cytokine-stimulated apoptosis [19, 45]. However,
the 25% inhibition of NO demonstrated here may have been
insufficient to affect ER stress.

Both our current results and previous studies [36, 37]
suggest that a major protective role afforded by deletion of
Prkcd might involve the destabilisation of multiple mRNA
transcripts. Preeminent among these would be Nos2 such
that the corresponding mRNA would be degraded more
rapidly in the absence of PKCδ, thereby limiting NO
generation. In general, however, the role of PKCδ in Nos2
expression and NO generation shown here for primary
islets is more modest than that previously elaborated using
INS-1 cells [7]. Despite this, we did observe a protective
effect of Prkcd deletion using the MLD-STZ model. This
suggests that mechanisms in addition to reduced NO
generation might be active in vivo. In support of this, we
provided data suggesting that PKCδ potentially regulates
stabilisation of multiple beta cell gene transcripts, and to a
greater extent than Nos2. Although these results will need
to be confirmed and extended in future studies, it seems
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more than coincidental that many of the candidate genes
cluster to the IL-R1 and/or TLR2 signalling pathways. We
believe the latter would provide the more productive
avenue for further investigation. First, we were unable to
provide direct evidence for a downregulation of IL-1R
signalling (although we only examined this in conjunction
with TNF-α and IFNγ, which may have confounded a
modest effect). Second, TLR2 signalling to MAPK path-
ways was disrupted by deletion of Prkcd. This is
noteworthy, as TLR2 has been implicated in beta cell
dysfunction in both type 1 and type 2 diabetes [46–48].
Interestingly, the role of TLR2 in the setting of type 1
diabetes appears to involve recruitment of autoimmune
cells that mediate secondary necrosis, rather than a beta cell
autonomous effect on apoptosis [47]. Whether PKCδ also
specifically modulates this process is a topic for future
studies. However, Prkcd−/− mice subjected to the MLD-
STZ protocol showed a significantly lower increase in
fasting blood glucose compared with wild-type mice,
although the time of onset of hyperglycaemia was similar
between the two groups. This would be consistent with
activation of PKCδ playing a modulatory role in progres-
sion of the disease. The MLD-STZ model, however,
generates only a mild insulitis [38, 39], and so we were
unable to quantify the extent to which loss of PKCδ
protects via effects in the beta cell directly, versus effects
within immune cells potentially regulating their recruitment
during insulitis. Such analyses would be better undertaken
in future by backcrossing Prkcd null mice onto the NOD
background.

In conclusion, there is a growing appreciation that
cytokines can regulate expression of (especially proinflam-
matory) genes via mRNA stabilisation, as well as via
transcription [49, 50]. Various PKC isoforms, including
PKCδ, are implicated in these stabilisation pathways [36,
37]. Although much effort has been devoted to elucidating
the transcriptional networks regulated by cytokines in beta
cells, our results suggest that mRNA stabilisation pathways
might also be a topic of great relevance to type 1 diabetes,
particularly in the context of a role for PKCδ.
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