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SUMMARY

T cell receptor (TCR) contact with self ligands keeps
T cells alive and is shown here to cause naive CD8+,
but not CD4+, T cells to be hypersensitive to certain
gc cytokines, notably interleukin (IL)-2, IL-15, and
IL-7. Hypersensitivity of CD8+ T cells to IL-2 was
dependent on a low-level TCR signal, associated
with high expression of CD5 and GM1, a marker for
lipid rafts, and was abolished by disruption of lipid
rafts. By contrast, CD4+ T cells expressed low
amounts of GM1 and were unresponsive to IL-2.
Physiologically, sensitivity to IL-7 and IL-15 maintains
survival of resting CD8+ T cells, whereas sensitivity to
IL-2 may be irrelevant for normal homeostasis but
crucial for the immune response. Thus, TCR contact
with antigen upregulates GM1 and amplifies respon-
siveness of naive CD8+ T cells to IL-2, thereby making
the cells highly sensitive to exogenous IL-2 from CD4+

T helper cells.

INTRODUCTION

Naive T cells are kept alive through continuous T cell receptor

(TCR) interaction with major histocompatibility complex (MHC)

molecules complexed with various self peptides (Boyman et al.,

2007; Guimond et al., 2005; Jameson, 2005). Such TCR-MHC

interaction plus contact with interleukin (IL)-7 causes low-level

signaling, which promotes long-term survival of T cells in inter-

phase through synthesis of antiapoptotic molecules such as

Bcl-2. During lymphopenia, T cells begin to divide and differen-

tiate into cells with features of memory cells. Such lymphope-

nia-induced ‘‘homeostatic’’ proliferation (LIP) reflects a rise in

amounts of IL-7 and serves to replenish the T cell pool size.

The propensity for T cells to undergo LIP correlates with their

intrinsic TCR affinity for self-MHC ligands. Thus, for CD8+ T cells,

naive cells from the 2C and OT-1 lines of TCR transgenic (Tg)

mice have relatively high (‘‘above-average’’) affinity for self-

MHC class I (MHC-I) ligands, and these cells proliferate exten-

sively when transferred to T cell-deficient mice (Kieper et al.,

2004; Surh and Sprent, 2000). By contrast, cells from the HY
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line of TCR Tg mice have very low self reactivity and fail to prolif-

erate in lymphopenic hosts (Kieper et al., 2004; Rocha and von

Boehmer, 1991). Although direct data on the extent of TCR

affinity for self-MHC ligands is sparse, there appears to be

a good correlation with expression of CD5. Thus, cells with rela-

tively high self-MHC reactivity express high density of CD5 and

vice versa (Azzam et al., 1998, 2001; Smith et al., 2001). This

correlation may seem surprising because CD5 is generally

viewed as a negative regulator of T cell function (Tarakhovsky

et al., 1995). Nevertheless, expression of CD5 and various other

negative regulators on T cells after positive selection is important

for modulating TCR reactivity. Such TCR ‘‘tuning’’ is presumed

to maintain the overall avidity of T cell interaction with MHC

and other ligands on antigen-presenting cells (APCs) at a precise

level sufficient to deliver survival signals, but not to initiate entry

into cell cycle, thereby preserving self-tolerance (Azzam et al.,

2001; Grossman and Paul, 2001; Marquez et al., 2005; Wong

et al., 2001).

IL-7-driven LIP in lymphopenic hosts is characteristically slow.

Recently, a rapid form of homeostatic proliferation has been

observed following T cell transfer to mice lacking components

of the IL-2 receptor (IL-2R) (Cho et al., 2007; Ramsey et al.,

2008). In these hosts, naive CD8+ T cells undergo massive

expansion driven by the elevated concentrations of IL-15 and/

or IL-2 in IL-2R-deficient hosts. Similar proliferation is induced

by injection of high doses of IL-2 in normal mice (Cho et al.,

2007; Kamimura and Bevan, 2007). Importantly, IL-2-induced

proliferation of naive CD8+ T cells is dependent on TCR-MHC

interaction, is much lower with HY than 2C or OT-1 TCR Tg

T cells, and is substantially reduced following T cell transfer to

MHC-I-deficient hosts (Cho et al., 2007).

The physiological relevance of naive T cell responsiveness to

IL-2 and IL-15 and why such responsiveness is MHC dependent

is unknown. To assess this issue, we have studied stimulation of

naive T cells with cytokines in vitro and examined the role of

monosialotetrahexosylganglioside (GM1)-containing lipid rafts.

These structures consist of cholesterol and sphingolipid-en-

riched microdomains on the cell membrane and serve to pro-

mote signal transduction via raft-associated receptors (Simons

and Toomre, 2000). We showed here that expression of lipid rafts

(GM1) is especially high on CD8+ T cells and correlates directly

with responsiveness to cytokines and relative TCR affinity for

self-MHC ligands.
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RESULTS

Responses of Naive T Cells to Cytokines In Vitro
Flow cytometry-sorted naive (CD44lo) CD8+ T cells prepared

from lymph nodes (LNs) of C57BL/6 (B6) mice (Figure S1A avail-

able online) were cultured in vitro with cytokines in the absence

of APCs. Of 11 cytokines tested, only IL-2 and IL-15 induced

proliferation of CD8+ T cells as defined by CFSE dilution (Fig-

ure 1A) or [3H]thymidine incorporation (Figure 1B); these cyto-

kines were stimulatory only for CD8+ T cells and not CD4+

T cells (Figures 1A and 1B). Proliferation of CD44lo CD8+

T cells by IL-2 or IL-15 required quite high concentrations of

cytokines, i.e., 0.1–1 mg/ml, which was 10- to 100-fold higher

than for stimulation of memory-phenotype CD44hi CD8+ T cells

(Figures S1B and S1C). For CD44lo T cells, responses to cyto-

kines occurred slowly and reached a peak on days 6 to 7 (Fig-

ure 1C and Figure S1D); viability of the cells was close to

100% (Figure 1D). In control cultures stimulated by CD3 ligation

(crosslinked CD3 mAb), proliferative responses were high on day

2 and then declined to low levels by day 4 (Figure 1C), in parallel

with a sharp decline in cell viability (Figure 1D).

Proliferation of naive CD8+ T cells by IL-2 versus IL-15 was

almost identical, although responses were generally slightly

lower with IL-15 than for IL-2, both for polyclonal T cells derived

from B6 as well as for OT-I and 2C TCR Tg CD8+ T cells

(Figure 1E). Both cytokines were used for nearly all of the exper-

iments discussed below, with comparable results. For simplicity,

only the data for IL-2 are shown.

Naive CD8+ T cells stimulated with IL-2 (or IL-15) alone

showed slow upregulation of a variety of typical markers found

on activated CD8+ T cells, including CD25, CD44, and CD69

(Figure 1F). Importantly, IL-2-stimulated CD8+ T cells showed

strong effector function in terms of both cytokine (IFN-g and

TNF-a) and granzyme B synthesis (Figure 1G). This finding was

surprising because the cells were not subjected to TCR ligation.

The influence of TCR signaling is discussed below.

IL-2 Stimulation and the Requirement
for TCR-MHC Interaction
Since IL-2-induced proliferation of naive CD8+ T cells in vivo

required TCR interaction with self-MHC-I (Cho et al., 2007), IL-2

responses from purified naive CD8+ T cells in vitro might depend

upon some form of T cell-T cell interaction. A requirement for

cell-cell interaction via costimulatory and/or adhesion molecules

seems unlikely because responses of 2C CD8+ T cells to IL-2

were as high with Itgal(LFA-1)–/– cells and Cd28–/– cells as with

normal wild-type (WT) cells (Figures S2A and S2B).

As discussed earlier, CD8+ T cells from the HY TCR Tg line are

thought to have much lower intrinsic TCR affinity for self-MHC-I

ligands than 2C, OT-I, or P14 CD8+ T cells (Ernst et al., 1999;

Kieper et al., 2004; Rocha and von Boehmer, 1991). In marked

contrast to B6 and P14 T cells, purified CD44lo CD8+ HY

T cells (from HY.Rag2–/– mice) gave negligible proliferative

responses to IL-2 in vitro and failed to differentiate into effector

cells (Figures 2A and 2B), whereas all three populations gave

equivalent responses to CD3 mAb (see below).

Direct evidence that IL-2 responses in vitro were MHC-I

dependent came from studies with MHC-I-deficient CD8+

T cells (triple knockout [KO]; H2-Kb–/–, Db–/–, and B2m–/–, here-
after referred to as MHC-I KO), which were prepared from

bone marrow (BM) chimeras (Figure S2C). As shown in Figure 2C,

responses of CD44lo CD8+ T cells to IL-2 were much lower for

MHC-I KO cells than for WT cells; meanwhile, CD3 responses

were unimpaired (Figure S2D). These findings applied when

the cells were cultured separately, as shown for CFSE dilution

versus granzyme B synthesis in Figure 2D. In marked contrast,

both populations gave equivalent responses to IL-2 when

MHC-I WT and KO cells were cocultured (Figure 2E). These find-

ings indicated that IL-2 responses in vitro required TCR-MHC-I

interaction via cell-cell contact.

The residual response of MHC-I KO CD8+ T cells to IL-2 in vitro

declined further when MHC-I KO CD8+ T cells from chimera

donors were parked for 3 days in MHC-I KO hosts, thus depriving

the cells of all MHC-I contact (Figure S2E). Such short-term park-

ing reduced the sensitivity of the transferred cells to proliferate in

response to IL-2 by about 4-fold, relative to fresh MHC-I KO cells

from chimeras, and by 10-fold, relative to cells from normal mice

(Figure 2F). Further evidence on this issue came from experi-

ments in which normal B6 CD8+ T cells were parked for 3 days

in Tap1–/– (MHC-Ilo) mice, with normal B6 and Il7–/– mice as

controls; nonirradiated animals were used as hosts, thus limiting

the opportunity for T cell-T cell interaction between the donor

cells. The notable finding was that the ability of the transferred

cells to proliferate in response to IL-2 was 5- to 10-fold lower

for CD8+ T cells parked in Tap1–/– hosts than in normal B6 or

Il7–/– mice (Figure 2G); by contrast, responses to CD3 ligation

were unimpaired.

The above data provide strong evidence that CD8+ T cell

responses to IL-2 in vitro required continuous TCR-MHC-I inter-

action. Preventing this interaction during culture reduced, but

did not abolish, IL-2 responsiveness, apparently because

CD8+ T cells retained ‘‘memories’’ of the TCR signals encoun-

tered during their prior interaction with self-MHC-I ligands

in vivo.

Influence of CD5 on Responsiveness to Cytokines
As mentioned earlier, TCR Tg CD8+ T cells exhibiting poor

homeostatic proliferation in T cell-deficient hosts have low

CD5 expression and vice versa (Kieper et al., 2004). These find-

ings raised the possibility that the responsiveness of normal

polyclonal B6 CD8+ T cells to IL-2 in vitro would correlate with

their relative expression of CD5. To assess this idea, CD44lo

CD8+ B6 T cells were sorted into CD5lo and CD5hi T cells

(Figure S3A). Despite giving similar responses to CD3 ligation

(Figure 3A), B6 CD5lo T cells gave far lower responses than

CD5hi T cells to IL-2 (Figure 3B) and failed to upregulate activa-

tion markers in response to IL-2 (Figure 3C). Similar findings

applied to CD5lo versus CD5hi CD8+ T cells from 2C and HY Tg

mice (Figure 3D and data not shown); note that the HY mice

used were on a normal (not Rag2–/–) background, thus resulting

in generation of both HY TCR-clonotype-positive (T3.70+) T cells

(mostly CD5lo) and non-HY (T3.70�) T cells (mostly CD5hi).

As for TCR Tg lines (see above), the subset of polyclonal CD5hi

naive CD8+ T cells from B6 mice gave stronger homeostatic

proliferation in T cell-depleted hosts than CD5lo T cells

(Figure 3E). Since proliferation in T cell-depleted hosts is driven

by high amounts of IL-7, the implication is that CD5hi T cells

are hypersensitive to IL-7. This question was difficult to address
Immunity 32, 214–226, February 26, 2010 ª2010 Elsevier Inc. 215



Figure 1. Proliferation and Differentiation of Naive CD8+ T Cells Exposed to Cytokines In Vitro

(A) CFSE-labeled or (B) unlabeled naive (CD44lo) B6 CD4+ or CD8+ T cells were cultured with the indicated cytokines (A and B; all 1 mg/ml except IFNb used at

2 3 104 units/ml) and analyzed for proliferation on day 5 by (A) flow cytometry and (B) [3H]thymidine incorporation. (C) Proliferation kinetics and (D) viable cell

counts for B6 naive CD8+ T cells cultured with crosslinked CD3 mAb (5 mg/ml), IL-2 (1 mg/ml), or IL-15 (1 mg/ml) were measured by (C) [3H]thymidine uptake

and (D) trypan blue exclusion assay. (E) Proliferation of naive B6, 2C, or OT-I CD8+ T cells on day 5 after culture with or without 1 mg/ml IL-2 or IL-15. (F) Expression

of activation markers on B6 naive CD8+ T cells stimulated with crosslinked CD3 mAb (5 mg/ml) or IL-2 (1 mg/ml). (G) Intracellular cytokine production and granzyme

B expression were analyzed for naive B6 CD8+ T cells cultured for 3 days with the indicated stimuli (1st stimuli) as described in Supplemental Experimental Proce-

dures. Data (A–G) are representative of at least three independent experiments (B–E are mean and SD of triplicate samples).
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in vitro because IL-7 caused minimal proliferation of naive CD8+

T cells in culture (Figures 1A and 1B). Nevertheless, cell-sorting

studies showed that the minor subset of CD5hi CD8+ T cells
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did give substantial proliferation to IL-7 in vitro (Figure 3F). These

responses were considerably enhanced by the addition of IL-12,

perhaps mimicking the cytokine environment encountered



Figure 2. Response of Naive CD8+ T Cells to IL-2 Depends on TCR-Self-MHC-I Interaction

(A) Proliferation and (B) CFSE dilution with granzyme B expression of naive B6, HY (from HY.Rag2–/– mice) or P14 CD8+ T cells on day 6 after culture with various

(0.05–1.5 mg/ml; A) or fixed (1.5 mg/ml; B) concentrations of IL-2. (C) Proliferation of purified MHC-I WT (from normal B6) or MHC-I KO (from MHC-I KO / B6 BM

chimeras) naive CD8+ T cells on days 3 and 6 after stimulation with IL-2. (D and E) CFSE dilution and granzyme B expression of purified MHC-I WT (Thy1.1; from

B6) and MHC-I KO (Thy1.2; from BM chimeras in C) naive CD8+ T cells either cultured (D) separately or (E) cocultured for 5 days with IL-2. (F) Proliferation of naive

CD8+ T cells from B6 (MHC-I WT), BM chimeras in (C) (MHC-I KO), or MHC-I KO mice injected with MHC-I KO CD8+ T cells (from BM chimeras in C) 3 days before

(MHC-I KO / MHC-I KO) was analyzed on day 4 after culture with IL-2. (G) Proliferation of B6 naive CD8+ T cells (Ly5.1) parked for 3 days and recovered from B6

(B6 / B6), Il7–/– (B6 / Il7–/–), or Tap1–/– (B6 / Tap1–/–) mice on day 4 after culture with IL-2 or on day 3 with crosslinked CD3 mAb. Data (A–G) are representative

of two to three experiments (C, F, and G are mean ± SD of triplicate samples).
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in vivo (see Discussion). The responses with CD5lo T cells were

much lower.

Collectively, these findings indicated that the hyperresponsive-

ness of CD5hi T cells to cytokines applied to IL-7, as well as to IL-2.

Conversely, CD5lo T cells responded poorly to both cytokines,

while retaining strong reactivity to TCR-CD3 ligation. Similar find-

ings applied to IL-15. Thus, after injection into irradiated hosts,

proliferative responses to IL-15 were substantially higher for

CD5hi than CD5lo T cells, especially in Il7–/– hosts (Figure S3B).
GM1 and the Role of Lipid Rafts
The simplest explanation for the hyperresponsiveness of CD5hi

T cells to cytokines is that these cells have higher numbers of

cytokine receptors than CD5lo T cells. However, this possibility

is unlikely because the expression of CD122 (IL-2Rb) was only

slightly lower on CD5lo than CD5hi T cells and there was no

marked difference in the expression of CD127 (IL-7Ra) or

CD132 (gc) (Figures S3C and S3D). For CD122 expression, cell

sorting for subsets of CD5hi and CD5lo T cells that expressed
Immunity 32, 214–226, February 26, 2010 ª2010 Elsevier Inc. 217



Figure 3. Levels of CD5 on Naive CD8+ T Cells Correlate with the Strength of Responsiveness to Cytokines in Vitro and In Vivo
(A–D) Naive CD5lo and CD5hi CD8+ T cells from (A–D) B6, (A and D) 2C, and HY.Rag2+/+ mice were cultured with (A) crosslinked CD3 mAb for 3 days or (B) IL-2 for

days 3 and 5, (C) for day 5, or (D) for day 6 and analyzed for (A, B, and D) proliferation or (C) expression of activation markers.

(E) CFSE-labeled B6 naive CD5lo (Ly5.1) and CD5hi (Thy1.1) CD8+ T cells were cotransferred to irradiated B6 or Rag1–/– mice and 6 days later, pooled SP and LN

were analyzed for CFSE dilution (left), percentage of donor cells that underwent >3 rounds of division, and total donor cell recovery (middle and right, respectively;

mean and SD of three mice per group).

(F) Proliferation of CFSE-labeled B6 naive CD5lo and CD5hi CD8+ T cells on day 7 after culture with IL-7 (50 ng/ml), IL-12 (50 ng/ml), or both. Data (A–F) are

representative of two to three experiments (A, B, and D are mean ± SD of triplicate samples).
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the same density of CD122 did not affect the much higher

response of CD5hi T cells to IL-2 (Figure S3E).

In considering other possibilities, it is striking that naive CD8+

T cells responded strongly to IL-2 despite having only low

expression of IL-2Rb, relative to memory CD8+ T cells (Zhang

et al., 1998). One explanation for this paradox is that binding of

IL-2 to low amounts of IL-2Rb causes this receptor to move

into lipid rafts, thereby enhancing signal transduction (Simons

and Toomre, 2000). To assess this idea, naive CD8+ T cells

were pretreated with methyl-b-cyclodextrin (MbCD) to disrupt

lipid rafts before culture with IL-2. This treatment substantially

reduced proliferation to IL-2, but caused only a small decrease

in CD3 responses (Figures 4A and 4B). This finding raised the
218 Immunity 32, 214–226, February 26, 2010 ª2010 Elsevier Inc.
possibility that the strong response of CD5hi CD8+ T cells to

IL-2 correlated with high expression of lipid rafts. This was

indeed the case. Thus, using cholera toxin B subunit (CTB) to

detect GM1 in lipid rafts, GM1 expression on CD44lo CD8+

T cells was significantly higher on CD5hi T cells than CD5lo

T cells, both for HY cells (hereafter referred to as HY.Rag2+/+

to distinguish these from HY. Rag2–/– in Figure 2; Figure 4C

and Figure S4A), OT-I, and 2C cells (Figure S4B) and normal

B6 cells (Figure 4D and Figure S4C). There was a close correla-

tion between CD5 and GM1 density, CD5hi T cells being

uniformly GM1hi, and CD5lo T cells being GM1lo (Figures S4A–

S4D). Memory CD44hi CD8+ T cells were CD5hi and GM1hi

(Figures 4C and 4D).



Figure 4. GM1 Expression on T Cell Subsets and the Effects of Disrupting Lipid Rafts on the Ability of Naive CD8+ T Cells to Respond to IL-2

(A) Proliferation and (B) percent inhibition of proliferation of MbCD-treated naive B6 CD8+ T cells were analyzed on day 2 after culture with the indicated stimuli.

Data show the mean ± SD of triplicate samples. (C) GM1 expression (MFI) on CD44hi CD8+, CD44lo CD5lo versus CD44lo CD5hi CD8+ T cells from HY mice

analyzed by flow cytometry. Data show the mean and SD of five mice. (D) GM1 MFI levels on CD44lo versus CD44hi subsets (left) or naive (CD44lo) CD5lo versus

CD5hi subsets (right) of B6 CD4+ and CD8+ T cells. Each circle represents an individual mouse, and the line indicates the mean. (E) Proliferation of B6 naive GM1lo

and GM1hi CD8+ T cells on day 3 after culture with IL-2 or on day 1 with crosslinked CD3 mAb. Data show the mean ± SD of triplicate samples. (F) CFSE-labeled

B6 naive GM1lo (Ly5.1) and GM1hi (Thy1.1) CD8+ T cells were cotransferred to irradiated B6 mice and 7 days later, pooled SP and LN were analyzed for CFSE

dilution (left), percentage of donor cells that underwent >4 rounds of division, and total donor cell recovery (middle and right, respectively; mean and SD of three

mice). Data (A–F) are representative of two to three independent experiments.
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For naive CD8+ T cells, MbCD treatment did not affect expres-

sion of CD5, CD122, or CD132 (data not shown). Hence, IL-2

responsiveness was not the direct result of high CD5 expression

per se; likewise, the effects of MbCD treatment did not reflect

decreased IL-2R expression.

Flow cytometry-sorting CD44lo CD8+ T cells for GM1 expression

(Figure S4E) showed that sorted GM1hi T cells closely resembled

sorted CD5hi T cells. Thus, GM1hi T cells were 10-fold more sensi-

tive to IL-2 invitro (Figure4E, left)andshowedstrongerhomeostatic

proliferation in T cell-deficient hosts (Figure 4F) than GM1lo T cells.
Both populations gave similar responses to CD3 ligation (Figure 4E,

right). GM1hi CD8+ T cells also gave stronger proliferation to IL-7 +

IL-12 invitro thanGM1lo Tcells (FigureS4F). In general, results were

‘‘cleaner’’ with sorted CD5hi and CD5lo T cells than with sorted

GM1hi and GM1lo T cells, reflecting better cell separation for CD5

than GM1 expression (Figures S3A and S4E).

GM1 and Thymic Selection
For B6 thymocytes, GM1 expression was low on ‘‘double-posi-

tive’’ (DP) cells but high on ‘‘single-positive’’ (SP) CD4– CD8+
Immunity 32, 214–226, February 26, 2010 ª2010 Elsevier Inc. 219



Figure 5. Expression of GM1 and CD5 on T

Cell Subsets during Ontogeny

(A and B) GM1 and (C) CD5 MFI levels on (A and C)

B6 DP, SP CD4+ and SP CD8+ thymocytes or (B)

CD24lo versus CD24hi subsets of SP CD4+ and

CD8+ thymocytes. (D) GM1 (left) and CD5 (right)

MFI levels on CD44lo CD4+ versus CD44lo CD8+

T cells in B6 LN. Data (A–D show mean and SD

of three to five mice) are representative of three

experiments. (E) GM1 MFI levels of B6 naive

CD4+ and CD8+ T cells (Ly5.1) cotransferred to

normal B6 or Tap1–/– mice 1 or 3 days before;

pooled SP and LN were analyzed by flow cytome-

try. Data (mean ± SD of two to three mice per

group at each time point) are representative of

three experiments.
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cells (Figure 5A). For SP CD8+ thymocytes, GM1 expression was

higher on fully-mature CD24 (HSA)lo cells than on less-mature

CD24hi cells (Figure 5B). Thus, GM1 was upregulated on CD8+

T cells during positive selection and increased progressively

during maturation of these cells. Likewise, as described else-

where (Azzam et al., 1998), CD5 expression was low on DP cells

and increased moderately on SP CD8+ T cells during their matu-

ration into CD24lo T cells (Figure 5C and data not shown). The

data on CD4+ T cells were quite different. Thus, differentiation

of DP cells into mature SP CD4+ T cells led to very high expres-

sion of CD5 (much higher than on CD8+ T cells) but to only a minor

increase in GM1 expression (Figures 5A–5C and data not

shown). This phenotype was retained by fully mature naive LN

CD4+ T cells, indicating that the complete unresponsiveness of

these cells to IL-2 (Figures 1A and 1B) correlated with very

high CD5 expression and very low GM1 expression (Figure 5D).

GM1 and MHC-I Dependency
The reduction in IL-2 responsiveness that occurred when CD8+

T cells were deprived of MHC-I contact (Figures 2F and 2G)

correlated with a decrease in GM1 expression. Thus, parking

CD44lo B6 T cells for 3 days in normal B6 versus Tap1–/– mice

caused a significant, 30%, decrease in GM1 expression on the

donor CD8+ T cells, but not CD4+ T cells, in Tap1–/– hosts

(Figure 5E and Figure S5). Contrasting with studies in MHC-I

KO hosts (Takada and Jameson, 2009), CD5 expression on the

transferred cells remained unchanged or decreased only slightly

and there was no decline in CD122 (data not shown). Thus, the

data suggest that continuous TCR-self-MHC interaction main-
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tains the density of GM1, thereby pro-

moting the responsiveness of T cells to

cytokines.

Colocalization of GM1 and IL-2Rb

Confocal microscopy showed prominent

clustering of cell-surface GM1 when

naive CD8+ T cells were stimulated with

either IL-2 or CD3 mAb (Figure 6A and

Figure S6A). GM1 clustering was more

noticeable with CD5hi than CD5lo CD8+

T cells and, because of minimal staining,

was not apparent with CD4+ T cells
(Figure 6B). For CD8+ T cells, culture with IL-2 or IL-15 induced

intense GM1 clustering on nearly all of the cells (Figure 6C and

Figure S6A). Substantial but weaker clustering was induced by

IL-7, though only on about 20% of the cells (Figure S6B); this

finding correlated with IL-7 responsiveness in vitro being

restricted to the minor subset of CD5hi T cells (Figure 3F). No

GM1 clustering was observed after exposure to IL-4 or IL-21

(Figure 6C). Of particular interest was the finding that IL-2 stimu-

lation caused coclustering of GM1 with IL-2Rb (Figure 6D and

Figure S6C); such coclustering was especially prominent with

CD5hi T cells (Figure S6D). By contrast, there was no cocluster-

ing of CD5 with either GM1 or IL-2Rb (data not shown). With

regard to the mechanisms involved, GM1 clustering was not

associated with an increase in GM1 synthesis (Figure S6E), but

was abolished by addition of cytochalasin D (but not by actino-

mycin D or cyclohexamide), suggesting that clustering was

dependent on actin polymerization and redistribution of pre-ex-

isting GM1 on the plasma membrane (Figure S6F). Correlating

with the extent of GM1-IL-2Rb chain coclustering (Figure S6D),

the proximal signaling events induced by IL-2 (phosphorylation

of Stat5, ERK, and AKT) were clearly more prominent in CD5hi

than CD5lo T cells (Figure S7).

Collectively, the above findings indicated that the strong

responsiveness of naive CD8+ T cells to cytokines correlated

with high expression of GM1, and presumably lipid rafts, such

expression being maintained by weak TCR signals arising from

continuous TCR interaction with self-MHC-I ligands. In a physio-

logical sense, sensitivity of naive CD8+ T cells to IL-7 is known to

be crucial for maintaining cell viability (Boyman et al., 2007;



Figure 6. Culturing Naive CD8+ T Cells with IL-2 Induces Lipid Raft Clustering and Colocalization of GM1 with IL-2Rb

(A) B6 naive CD8+ T cells were untreated or treated for 15 min with the indicated stimuli and analyzed for lipid raft clustering by GM1 confocal staining with

FITC-conjugated CTB (green) as described in Supplemental Experimental Procedures.

(B) GM1 confocal staining of CD5lo versus CD5hi subsets of B6 naive CD4+ and CD8+ T cells untreated or treated for 15 min with IL-2 (1 mg/ml).

(C) GM1 confocal staining of B6 naive CD8+ T cells cultured for 15 min with or without the indicated gc cytokines (1 mg/ml).

(D) B6 naive CD8+ T cells were cultured for 15 min with IL-2 (1 mg/ml) and analyzed for colocalization (yellow when merged) of GM1 lipid rafts (green) and IL-2Rb

(red). Data (A–D) are representative of two to three experiments.
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Guimond et al., 2005; Jameson, 2005). For IL-2, however, there

is no evidence that this cytokine is involved in the normal homeo-

stasis of naive CD8+ T cells. As discussed below, hyperrespon-

siveness of CD8+ T cells to IL-2 may only be physiologically

important when these cells begin to respond to foreign antigens.

Sensitivity of Naive CD8+ T Cells to IL-2 Augments
Helper-Dependent Responses to Foreign Antigens
Optimal responses of CD8+ T cells to antigen require the pres-

ence of ‘‘help’’ in the form of IL-2 from CD4+ T cells (Malek,

2002; Rocha and Tanchot, 2004; Williams et al., 2006; Wilson

and Livingstone, 2008). With strong antigens or TCR-CD3 liga-

tion in vitro, CD8+ T cells synthesize their own IL-2, and help

from CD4+ T cells is not needed for proliferation (Figure 3A).

With weak antigens, however, IL-2 synthesis by CD8+ T cells is

limited and proliferation requires the addition of exogenous

IL-2 (Cai and Sprent, 1994). Hence, effective responses to

weak antigens must depend on the cells being highly sensitive

to IL-2.

To mimic responses to weak antigens, CD5lo versus CD5hi

CD44lo CD8+ T cells were cultured with soluble (not crosslinked)

CD3 mAb in vitro together with graded low doses of IL-2

(<10 ng/ml) (Figure 7A). With CD3 mAb alone, proliferation was
undetectable; likewise, there was negligible proliferation with

low-dose IL-2 alone. With CD3 mAb plus IL-2, by contrast,

strong proliferative responses occurred. CD5hi T cells were 10-

to 20-fold more sensitive to the added IL-2 than CD5lo T cells.

Thus, TCR ligation with mAb considerably augmented respon-

siveness to IL-2, both for CD5hi and CD5lo T cells.

To examine responses to cognate antigens, subsets of naive

2C CD8+ T cells were cultured with strong versus weak ligands

recognized by the 2C TCR. For strong ligands, 2C cells (H-2b)

were cultured with BALB/c (H-2d) spleen cells, which present

highly immunogenic endogenous p2Ca peptides bound to Ld

(Sykulev et al., 1998); in this situation, the responding CD8+

T cells synthesize their own IL-2 and do not need exogenous

IL-2 to proliferate. As measured by CFSE dilution, proliferation

was clearly stronger with CD5hi than CD5lo T cells (Figure 7B).

Proliferation was blocked by IL-2 blockade, indicating that the

response was IL-2 dependent.

To examine helper-dependent responses, 2C cells were stim-

ulated with a very weak ligand, namely exogenous p2Ca peptide

presented by B6 (H-2b) spleen cells (Figure 7C); in this situation,

p2Ca peptide is presented in poorly immunogenic form bound to

Kb (Sykulev et al., 1998). Both on day 3 and day 5 of culture, 2C

CD8+ T cells failed to proliferate, presumably because the
Immunity 32, 214–226, February 26, 2010 ª2010 Elsevier Inc. 221



Figure 7. Hypersensitivity of CD8+ T Cells to IL-2 Augments Their Capacity to Respond to Foreign Antigens

(A) Proliferation of B6 naive CD5lo and CD5hi CD8+ T cells to a surrogate weak antigen; cells were cultured for 2 days with or without soluble CD3 mAb (0.1 mg/ml)

with graded concentrations of IL-2 (0.3–10 ng/ml). Data show the mean ± SD of triplicate samples.

(B) Proliferation of CFSE-labeled 2C naive CD5lo (Ly5.1) versus CD5hi (Thy1.1) CD8+ T cells to a strong antigen; cells were cultured with allogeneic BALB/c

splenocytes with or without IL-2 blockade and analyzed by flow cytometry.

(C) Proliferation of CFSE-labeled 2C naive CD5lo (Ly5.1) versus CD5hi (Thy1.1) CD8+ T cells to a weak antigen; cells as in (B) were cocultured with CFSE-labeled

OT-II naive CD4+ T cells and syngeneic B6 splenocytes pulsed with 20 mM p2Ca peptide with or without OVA323-339 peptide (OT-IIp).

(D) Surface markers on T cells after TCR stimulation were examined by culturing CD44lo CD8+ and CD4+ T cells for 20 hr in plates coated with graded concen-

trations of CD3 mAb and then stained for the markers shown. Data (A–D) are representative of two to four experiments.
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peptide was too weak to induce the cells to synthesize IL-2. To

provide a source of exogenous help, the 2C CD8+ T cells were

supplemented with OT-II CD4+ T cells with or without specific
222 Immunity 32, 214–226, February 26, 2010 ª2010 Elsevier Inc.
OVA323-339 peptide (which is presented bound to I-Ab by B6

spleen APCs [Robertson et al., 2000]). Here, the key finding

was that addition of OVA peptide to the mixture of 2C CD8+
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T cells and OT-II CD4+ T cells led to strong proliferation of the 2C

cells (as well as of the OT-II cells which were also CFSE-labeled),

reflecting IL-2 synthesis by the CD4+ T cells. Again, proliferation

was more prominent for CD5hi than CD5lo T cells (Figure 7C); for

both cell types, proliferation was minimal with a low dose of

p2Ca peptide (Figure S8A), indicating that the CD8+ T cell

response was p2Ca peptide dependent. Responses of 2C cells

were abolished by IL-2 blockade (but not IL-21 blockade), indi-

cating that help was IL-2 dependent (Figure S8B). Also, 2C

T cell responses were substantially reduced by pretreating these

cells with MbCD, implying that the responses required the integ-

rity of lipid rafts (Figure S8B).

To examine helper-dependent responses in vivo, 2C CD8+

T cells were injected into normal B6 mice together with moder-

ately immunogenic Kb-restricted SIYRYYGL (SIYR) peptide

(Udaka et al., 1996). At the very low concentrations of peptide

used, there was no proliferation of 2C cells (Figures S9A and

S9B). When exogenous IL-2 was injected as a surrogate for

CD4+ T cell help, the 2C T cells proliferated; proliferation was

peptide dose dependent, higher for CD5hi than CD5lo T cells

(Figure S9A), and was not seen in the absence of peptide

(Figure S9B). These in vivo findings thus correlated closely with

the in vitro studies.

In the above experiments, the increased reactivity of CD8+

T cells to IL-2 induced by TCR contact with antigen might reflect

increased synthesis of lipid rafts. In support of this notion, weak

CD3 mAb ligation of naive CD8+ T cells (but not CD4+ T cells) led

to a marked (�50%) increase in expression of GM1 by 20 hr of

culture but little change in CD122 or CD127 expression

(Figure 7D). By confocal microscopy, TCR ligation also potenti-

ated GM1 clustering after addition of IL-2 (Figure S10).

Thus, the strong responsiveness of resting naive CD8+ T cells

to IL-2 was further enhanced by TCR contact with foreign anti-

gens, thereby improving the immune response to both strong

and weak antigens. With strong antigens, the cells produced

their own IL-2, whereas with weak antigens the cells needed

IL-2 from CD4+ T cells. In both situations, CD5hi T cells gave

better responses than CD5lo T cells.

DISCUSSION

Past studies have shown that purified human naive CD4+ and

CD8+ T cells could be driven to proliferate by a cocktail of cyto-

kines and was intensified by addition of APC or APC-derived

supernatants (Geginat et al., 2003; Geginat et al., 2001; Unutmaz

et al., 1994). For CD8+ T cells, naive cells responded to IL-15

alone in one study (Alves et al., 2003) but only to a mixture of

IL-7 and IL-15 in another study (Geginat et al., 2003). In this

paper, we have shown that culturing purified naive mouse

CD8+ T cells with IL-2 in vitro led to strong proliferation and differ-

entiation into effector cells in the absence of APC. Similar results

were seen with IL-15, but other cytokines were essentially non-

mitogenic, with the exception of very weak stimulation by IL-7

(see below). These findings applied to CD8+ T cells. For CD4+

T cells, none of the cytokines tested individually, including IL-2

and IL-15, were able to stimulate purified populations of naive

CD4+ T cells.

Stimulation with IL-2 (or IL-15) alone in vitro was highly effec-

tive in causing naive CD8+ T cells to differentiate into effector
cells. This finding was surprising because the cells were not sub-

jected to TCR ligation. Nevertheless, the studies with MHC-I KO

CD8+ T cells indicated that IL-2 responses did require a covert

TCR signal. Thus, IL-2 responses in vitro were low with MHC-I

KO CD8+ T cells and were even lower when these cells were

deprived of all MHC-I contact by transfer to MHC-I KO mice.

Importantly, the unresponsiveness of MHC-I KO CD8+ T cells

to IL-2 was completely restored by coculture with normal

MHC-I WT CD8+ T cells, implying that the TCR signals needed

for IL-2 responses resulted from ‘‘background’’ TCR contact

with MHC-I on neighboring T cells. Further evidence that IL-2

responsiveness required TCR-MHC-I interaction came from

the finding that parking normal B6 CD8+ T cells briefly in

Tap1–/– mice led to a marked decline in IL-2 responses. Which

particular cells present the MHC-I ligands recognized by resting

CD8+ T cells in vivo is unknown.

It is of interest that IL-2 responsiveness correlated with high

expression of CD5. The prior finding that high CD5 expression

on naive TCR Tg CD8+ T cells was associated with strong

homeostatic proliferation in T cell-depleted mice (Kieper et al.,

2004) led to the current view that high CD5 expression is a mani-

festation of ‘‘above-average’’ TCR affinity for self-MHC epitopes.

Since homeostatic proliferation in lymphopenic hosts is driven

by elevated amounts of IL-7, the implication is that T cells with

strong self reactivity are hypersensitive to IL-7. The studies

with CD5lo versus CD5hi subsets of polyclonal B6 naive CD8+

T cells were consistent with this possibility. Thus, homeostatic

proliferation of CD5hi T cells in vivo and proliferative responses

to IL-7 in vitro were both much stronger with CD5hi T cells than

CD5lo T cells. The in vitro responses to IL-7 were very low unless

supplemented with IL-12, implying that responses to IL-7 in vivo

may require additional cytokines. The key point, however, is that

the hypersensitivity of CD5hi T cells to IL-7 also applied to IL-2

(and IL-15). Hence, the correlation between strong self-MHC

reactivity and heightened sensitivity to cytokines applies to at

least three different cytokines.

The observation that responses to cytokines correlated

directly with cell-surface expression of GM1 implicated lipid

rafts. Direct evidence in support of this notion came from the

finding that treatment of naive CD8+ T cells with MbCD to disrupt

lipid rafts led to a marked decrease in IL-2 responses. Notably,

confirming previous findings (de Mello Coelho et al., 2004),

GM1 expression was far higher on naive CD8+ T cells than

CD4+ T cells. By contrast, the reverse applied to CD5 expres-

sion. Hence, IL-2 responsiveness correlated well with GM1

expression, but not with CD5 expression. Also, in marked

contrast to the findings with GM1, IL-2 stimulation caused no

association of CD5 with the IL-2Rb chain by confocal micros-

copy, implying that CD5 expression per se is not involved in cyto-

kine responsiveness. Therefore, high CD5 expression on CD8+

T cells is simply a marker for high GM1 expression.

It is of interest that GM1 expression in the thymus was low on

DP cells and SP CD4+ T cells but high on SP CD8+ T cells. For the

latter, GM1 expression was higher on CD24lo T cells than CD24hi

T cells, implying that expression reached maximal amounts at

a late stage of positive selection. Thereafter, GM1 expression re-

mained constant when the cells were exported to the periphery.

Importantly, GM1 levels declined after cell transfer to Tap1–/–

mice, indicating that maintenance of GM1 expression required
Immunity 32, 214–226, February 26, 2010 ª2010 Elsevier Inc. 223
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continuous TCR-MHC-I interaction. Collectively, these findings

indicate that positive selection to strong self-MHC-I ligands

results in prominent upregulation of GM1, which, in turn, leads

to hypersensitivity to cytokines. Precisely how TCR signals

promote and maintain GM1 expression, however, is unclear.

The finding that cytokine responsiveness correlated with

expression of GM1, a lipid raft marker, begs the question of

the biological function of lipid rafts. For T cells, the prevailing

view is that movement of signaling molecules such as Lck and

other TCR-associated molecules into lipid rafts augments intra-

cellular signaling (Harder, 2004). The distribution of cytokine

receptors in lipid rafts, however, is controversial and information

on this topic largely concerns activated T cells (Bodnár et al.,

2008; Goebel et al., 2002; Marmor and Julius, 2001; Vámosi

et al., 2004). For naive CD8+ T cells, the IL-2Rb chain is found

mostly in the soluble-membrane fraction in resting cells but in

the lipid raft fraction after short-term culture with IL-2 (J.-H.C.

and H.-O.K., unpublished data). The colocalization studies

shown here are in line with these findings. Thus, culturing naive

CD8+ T cells with IL-2 led to rapid colocalization of IL-2Rb with

GM1, implying entry of this receptor into lipid rafts. This could

allow association with Lck, which is important for IL-2Rb

signaling (Hatakeyama et al., 1991; Minami et al., 1993).

Although, definitive evidence on the role of lipid rafts in IL-2

signaling will need future studies, it is notable that the selective

loss of GM1 and other complex gangliosides in GM2-GD2 syn-

thase-deficient mice led to a marked reduction in whole spleen

cell responses to IL-2 but normal responses to CD3 ligation

(Zhao et al., 1999). This finding fits well with the data on naive

CD8+ T cells reported here.

With regard to physiological significance, contact with IL-7 is

important for inducing expression of antiapoptotic molecules

such as Bcl-2, thereby maintaining cell viability. But what is the

significance of CD5hi (and GM1hi) T cells, i.e., cells with strong

affinity for self ligands, being more responsiveness to IL-7 than

CD5lo T cells? On this point, CD5hi T cells have substantially

higher levels of proapoptotic molecules such as Bim than

CD5lo T cells (J.-H.C. and H.-O.K., unpublished data). However,

CD5hi T cells also have higher levels of Bcl-2 than CD5lo T cells.

Hence, to counter the negative effects of high Bim expression,

one can envisage that cells with above-average TCR affinity for

self ligands need to be especially sensitive to IL-7 to ensure

high Bcl-2 expression; thus, the cells have to express high levels

of GM1. Conversely, cells with strong self-reactivity need to

express high levels of CD5, a negative regulator of TCR

signaling, in order to prevent breakage of self tolerance. There-

fore, for normal homeostasis, cells with strong self reactivity

have to be both GM1hi (for viability) and CD5hi (for self-tolerance).

With regard to other cytokines, the numbers of naive CD8+

T cells are reduced in Il15–/– mice (Kennedy et al., 2000). Hence,

CD8+ T cell viability may be maintained in part by responsiveness

to IL-15, as well as IL-7. For IL-2, however, contact with this cyto-

kine is not known to influence homeostasis of naive CD8+ T cells.

So, what is the benefit of these cells being responsive to IL-2?

Our suggestion is that the strong responsiveness of naive

CD8+ T cells to IL-2 is only important when these cells respond

to foreign antigens. On this point, it is well established that

CD8+ T cell responses to antigen generally require help from

CD4+ T cells. CD4+ help involves several mechanisms, including
224 Immunity 32, 214–226, February 26, 2010 ª2010 Elsevier Inc.
stimulation (‘‘licensing’’) of APC (Ridge et al., 1998; Schoen-

berger et al., 1998) and release of cytokines, especially IL-2

(Williams et al., 2006; Wilson and Livingstone, 2008), but also

IL-21 (Elsaesser et al., 2009). For primary responses, CD8+

T cells produce their own IL-2 in response to strong antigens,

and these responses are generally helper independent. With

weak antigens, by contrast, CD8+ T cell responses are heavily

dependent on help from CD4+ T cells. Here, help reflects the

release of IL-2, both in vitro and in vivo (Cai and Sprent, 1994;

Wilson and Livingstone, 2008).

As shown here, responses of naive CD8+ T cells to antigen

were heavily dependent on IL-2. With strong antigens, the

CD8+ T cells produced their own IL-2, whereas with weak anti-

gens, CD8+ T cell responses relied on exogenous IL-2 produced

by adjacent CD4+ T helper cells, these cells being engaged in

responses to a different antigen. The helper-driven response of

the CD8+ T cells was antigen dependent, indicating that the

response required TCR ligation and was not elicited by IL-2

alone. Hence, TCR contact of CD8+ T cells with antigen

enhanced their sensitivity to IL-2. Based on the expression of

GM1, TCR ligation appeared to augment IL-2 responsiveness

by inducing increased expression of lipid rafts. It is noticeable

that CD8+ T cell responses to antigen were higher with CD5hi

than CD5lo T cells. The interesting implication is that, especially

for weak antigens, CD8+ T cell responses may preferentially

involve CD5hi T cells, i.e., cells with high self reactivity. In vivo

studies will be necessary to assess this possibility.

In conclusion, we have shown here that after positive selection

in the thymus, continuous contact of naive CD8+ T cells with self-

MHC-I ligands in the periphery induces covert TCR signals that

promote sensitivity to several gc cytokines, including IL-7 and

IL-2. Responsiveness to cytokines is most prominent for CD5hi

T cells, i.e., cells with strong self reactivity, and correlates with

high expression of GM1, implicating a role for lipid rafts. In

a physiological sense, sensitivity to IL-7 and also IL-15 is impor-

tant for keeping naive CD8+ T cells alive in interphase. Sensitivity

of naive CD8+ T cells to IL-2 becomes vital during the immune

response. Thus, contact of CD8+ T cells with foreign antigen

induces a further increase in cytokine sensitivity, thereby boost-

ing the capacity of CD8+ T cells to receive help (IL-2) from CD4+

T cells.

EXPERIMENTAL PROCEDURES

Mice

B6, B6.PL (Thy1.1), B6.SJL (Ly5.1), Tap1–/–, and Rag1–/– mice (all on a B6

background) and BALB/c mice were purchased from The Jackson Laboratory

or Australian Animal Resources Center. Sources of 2C, 2C.Ly5.1, 2C.Thy1.1,

2C.Cd28–/–, 2C.Itgal–/–, P14, OT-I, HY.Rag2–/–, OT-II, Il7–/–, and MHC-I KO

mice, all on a B6 background, were described previously (Cho et al., 2007;

Kim et al., 2009; Ramsey et al., 2008; Rubinstein et al., 2006). HY.Rag2+/+

mice were from The Walter and Eliza Hall Institute of Medical Research. All

mice were maintained under specific pathogen-free conditions and used at

6–12 weeks of age, according to protocols approved by the Animal Experi-

mental and Ethic Committee at the Garvan Institute.

Reagents, Antibodies, and Flow Cytometry

Reagents and antibodies are described in Supplemental Experimental Proce-

dures. Cells were stained for detecting various cell surface markers with

antibodies according to standard protocols (Cho et al., 2007) or stained for

analyzing intracellular protein expressions as described in Supplemental
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Experimental Procedures. Flow cytometry samples were run using a LSR II

or FACSCanto II (BD Biosciences, San Jose, USA) and analyzed by FlowJo

software (Tree Star).

T Cell Preparation, In Vitro Culture, and Proliferation Assay

Naive or memory-phenotype (MP) CD4+ and CD8+ T cells were purified from

pooled LNs by cell sorting using a FACSAria (BD Biosciences, San Jose,

USA) to obtain CD4+CD25– CD44lo, CD8+ CD44lo, and CD8+ CD44hi T cells.

In some experiments, naive CD8+ CD44lo T cells were further sorted to isolate

CD5lo and CD5hi or GM1lo and GM1hi subsets. Purity of sorted T cells was

routinely tested after sorting and was >98% (with some exceptions for the

cell sorting for GM1). Naive TCR Tg T cells were purified by magnetic-activated

cell sorting (MACS) using a CD8+ T cell isolation kit (Miltenyi Biotec, Bergisch

Gladbach, DE) and using pretitrated amounts of biotin-conjugated CD44 mAb

for depleting CD44hi MP T cells. Sorted cells were plated in 96-well plates

(0.02–1 3 105 cells/well) and subjected to the indicated concentrations of

cytokines or CD3 mAb (145-2C11; crosslinked by plate coating or soluble,

as indicated) with or without CD28 mAb (37.51). At various time points,

[3H]thymidine (1 mCi per well) was added to the cultures and, after a 6–12 hr

pulse, measured with a b-counter. For visualization of proliferation, purified

T cells were labeled with CFSE as described elsewhere (Cho et al., 2007)

and analyzed by flow cytometry.

Bone Marrow Chimeras

MHC-I KO CD8+ T cells were prepared by reconstituting heavily-irradiated B6

(Ly5.1) mice with T cell-depleted bone marrow (BM) from MHC-I KO (Ly5.2)

mice as described elsewhere (Cho et al., 2007).

In Vivo Homeostatic Proliferation and Parking Experiments

To measure homeostatic proliferation driven by IL-7, a mixture of CFSE-

labeled purified naive CD5lo (Ly5.1) and CD5hi (Thy1.1) or GM1lo (Ly5.1) and

GM1hi (Thy1.1) B6 CD8+ T cells (5 3 105 cells of each per mouse) was trans-

ferred i.v. to Rag1–/– mice or irradiated normal B6 mice (550 cGy 1 day before

transfer). To measure IL-15-driven homeostatic proliferation, the above

mixture of CD8+ T cell subsets was transferred to irradiated Il7–/– mice and

1 day later, mice were injected intraperitoneally (i.p.) once with PBS or IL-15

(1 mg)/IL-15Ra (10 mg) complexes (Rubinstein et al., 2006). Proliferation and

recovery of donor cells were analyzed from pooled SP and LN on the indicated

time points by flow cytometry. For transient deprivation of self-MHC-I contact,

MHC-I KO CD44lo CD8+ T cells purified from BM chimeras were transferred i.v.

to MHC-I KO mice (1–2 3 106 cells/mouse); on day 3, donor cells were purified

from pooled SP and LN by flow cytometry and used for in vitro culture with the

indicated stimuli. In some experiments, B6 naive CD8+ T cells (Ly5.1) were

transferred i.v. to normal B6, Il7–/–, or Tap1–/– mice (2 3 106 cells/mouse)

and then recovered 3 days later, as for transfer into MHC-I KO hosts.

Lipid Raft Disruption and Confocal Staining

For lipid raft disruption, cholesterol was extracted from the plasma membrane

by culturing purified B6 naive CD8+ T cells at 1 3 106 cells per ml in serum-free

RPMI medium containing different concentrations of MbCD (0.3–10 mM;

Sigma-Aldrich, St. Louis, USA). Cells were incubated for 30 min at 37�C,

washed twice with complete RPMI medium, and then cultured with IL-2

(1 mg/ml) or crosslinked CD3 mAb (5 mg/ml) ± CD28 mAb (5 mg/ml); 2 days later,

proliferation was measured by [3H]thymidine uptake. The inhibition of prolifer-

ation induced by MbCD treatment was calculated by the following formula: %

inhibition = 100 � (100 3 c.p.m.MbCD treated/c.p.m.untreated). Various subsets of

purified CD4+ and CD8+ T cells receiving the indicated stimuli with various

conditions were placed on a poly-L-lysine coated glass slide (Sigma-Aldrich,

St. Louis, USA) and analyzed by confocal staining as described in Supple-

mental Experimental Procedures.

2C Cell Stimulation with or without CD4+ T Cell Help In Vitro

A mixture of purified CD5lo (Ly5.1) and CD5hi (Thy1.1) subsets of CD44lo CD8+

2C T cells (2–3 3 104 cells of each) was labeled with CFSE and cultured with

T cell-depleted irradiated allogeneic BALB/c splenocytes (3 3 105 cells/well) ±

IL-2 mAb (10 mg/ml; JES6-1 from BD Biosciences, San Jose, USA). For T

helper-dependent stimulation, the above CFSE-labeled 2C cell mixture was

cocultured with CFSE-labeled naive OT-II CD4+ T cells (1 3 104 cells/well)
with or without OVA323-339 peptide (0.2 mM; specific for OT-II TCR) with irradi-

ated syngeneic B6 splenocytes pulsed with p2Ca peptide (2–20 mM); note

that p2Ca peptide has �700 times lower affinity for 2C TCR when associated

with H-2Kb (B6) than with H-2Ld (BALB/c) (Sykulev et al., 1998). In some

experiments, the above helper dependent cultures were subjected to various

blockades and were also performed in vivo as described in Supplemental

Experimental Procedures.

Statistical Analysis

A two-tailed Student’s t test was used to determine statistically significant

differences. p values of less than 0.05 were considered statistically significant.

SUPPLEMENTAL INFORMATION

The Supplemental Information includes ten figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/

j.immuni.2009.11.014.
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