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Abstract 

B cells require signals from multiple sources for their development from precursor cells in the bone 

marrow, and differentiation into effector cells. BAFF and APRIL are members of the TNF superfamily 

of cytokines and have been identified as critical regulators of B cell development and differentiation. 

Defects in the production of BAFF and APRIL, and/or expression of their receptors, have been 

associated with a diverse array of human diseases characterised by perturbed B cell function and 

behaviour, including autoimmunity, malignancy, and immunodeficiency. This chapter will discuss the 

role of BAFF and APRIL in normal B-cell physiology, as well as the emerging evidence of their 

involvement in the pathogenesis of these human immunopathologies. 
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Introduction 

The generation of the mature B cell pool involves the step-wise development of hematopoietic stem cells 

into pro-B cells, which mature into pre-B cells and then immature B cells (1-3). Immature B cells are 

then exported to the periphery as transitional B cells which undergo further selection and developmental 

events to yield mature B cells (4, 5). When mature B cells encounter T-cell dependent (TD) antigen (Ag), 

they differentiate into high affinity effector cells, namely immunoglobulin (Ig)-secreting cells (ISC) or 

plasma cells (PC), as well as memory B cells and (3, 6). This process generally occurs within specialized 

structures in secondary lymphoid tissues called germinal centres (GC) (3, 6) (Figure 1). Thus, mature B 

cells are responsible for the generation of long-lived humoral immunity. The co-ordinated differentiation 

of B cells at these different stages of development and maturation is influenced by multiple factors, such 

as stromal cells and cytokines provided by the bone marrow (BM) microenvironment, strength of 

interactions with specific Ag, and cross-talk between B cells, Ag-specific T cells, follicular dendritic 

cells (FDC) and dendritic cells (DC) in peripheral lymphoid tissues (1, 3, 6). 

The differentiation of mature B cells into effector cells requires strict regulation so as to facilitate the 

generation of Ag-specific humoral immune responses whilst simultaneously avoiding the generation of 

autoantibodies. Receptor/ligand pairs of the tumour necrosis factor receptor (TNF-R)/TNF superfamily 

play critical roles during B-cell responses. The best characterised of these involve interactions between 

CD40 (7), CD27 (8), CD134 (OX40) (9) and TNF-R (10) on B cells and their respective ligands 

(CD40L, CD70, CD134L, TNF-!), usually on CD4
+
 T cells, which promote B cell proliferation, 

differentiation and Ig secretion, while ligation of CD30 (11) and CD95 (12) negatively regulate B cell 

behaviour. During the past 10 years, BAFF and APRIL, ligands of the TNF superfamily, have emerged 

as potent regulators of multiple functions of human and murine B cells. Here, we will review the role of 

BAFF, APRIL and their respective receptors in B-cell activation during normal immune responses, as 

well as in the pathogenesis of a variety of human diseases. 

 



Tangye & Fulcher. BAFF, APRIL and human diseases. 25/6/08 

Page 4 of 32 

BAFF and APRIL: ligands of the TNF family 

B cell activating factor belonging to the TNF family (BAFF) (13-16) and a proliferation-inducing ligand 

(APRIL) (17) were independently identified based on their homology to the TNF superfamily (reviewed 

in (18-20)). BAFF and APRIL are produced by hematopoietic cells such as monocytes, macrophages, 

DCs, astrocytes (21-24) and neutrophils (25, 26), as well as non-hematopoietic cells, namely epithelial 

cells present in the intestine and respiratory tract (27-29), and FDC in secondary lymphoid tissues (30). 

Production of BAFF and APRIL by these cell types can be increased following stimulation with a broad 

range of cytokines [CD40L, IL-10, IFN-!, IFN-", IFN-# (21-24, 27), G-CSF (25, 31), the IL-7-related 

cytokine TSLP (28, 29)] or ligands for specific Toll-like receptors (TLR) (27-29). Expression of both 

BAFF and APRIL can also be induced in human B cells following infection with Epstein Barr virus 

(EBV) (32) or dual stimulation through CD40 and the B-cell receptor (BcR) (33). 

BAFF binds three receptors belonging to the TNF-R superfamily – BAFF receptor (BAFF-R/BR3) (34, 

35), transmembrane activator of and calcium modulator and cyclophilin ligand (CAML) interactor 

(TACI), and B cell maturation antigen (BCMA). APRIL does not interact with BAFF-R, however it can 

bind to both TACI and BCMA (36-40). Interestingly, heparin sulfate proteoglycan (HSPG) has been 

identified as a unique receptor for APRIL (41). In mice, BAFF-R is expressed at low levels on early 

transitional B cells and upregulated on late transitional, follicular and marginal zone (MZ) B cells (42), 

however it is absent from pro-B and pre-B cells in the BM. TACI exhibits a similar expression profile to 

BAFF-R, being low/absent on murine splenic T1 B cells, induced at the follicular stage, and further 

increased on late transitional and MZ B cells (26, 43). In contrast to both BAFF-R and TACI, BCMA 

message can be detected in transitional B cells in murine spleen, but then down-regulated at later stages 

of B cell maturation (43). While neither BAFF-R nor TACI were detected in murine BM PC, these cells 

did contain mRNA for BCMA (44).  

 

In humans, transitional, naïve, GC and memory B cells are all capable of binding soluble BAFF. 

Transitional and naïve B cells bind BAFF exclusively through BAFF-R, because TACI and BCMA are 
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absent from these cells. On the other hand, memory B cells can interact with BAFF through either 

BAFF-R or TACI, but not BCMA (26, 30, 45-53). Human GC B cells express BAFF-R, albeit at a 

reduced level compared to naïve and memory B cells, as well as BCMA (26, 30, 51). Expression of 

TACI by human GC B cells is controversial, as it has been reported to be both absent (26, 30, 51) and 

present (54) from this B-cell subset. Human plasmablasts acquire expression of BCMA and TACI yet 

down-regulate BAFF-R (30, 45, 55, 56). Interestingly, PC present in human tonsils retain expression of 

TACI and BCMA following their maturation from the plasmablast stage (52, 54), but then down-regulate 

expression of all known BAFF receptors once they undergo terminal differentiation and migrate to the 

BM (45, 46, 52). Thus, it would appear that normal human B cells first express BAFF receptors at the 

transitional stage of development and remain capable of receiving BAFF-dependent signals at least until 

they terminally differentiate into PC (see Figure 1).  

Functions of BAFF 

(a) B cell survival and proliferation 

Murine B cells 

A predominant function of BAFF is in promoting and/or sustaining the survival of late transitional and 

mature murine B cells (reviewed in (18-20)). The mechanism by which BAFF exerts this effect is by 

altering the ratio between pro-survival and pro-apoptotic molecules. Expression of the anti-apoptotic 

genes A1, bcl-2, bcl-xL (43, 57) and Mcl-1 (44, 58) was increased following in vitro exposure of murine 

B cells to BAFF, while that of pro-apoptotic molecules Bak (57), Blk (59) and Bim (60, 61) was reduced. 

As a result of enhanced survival,BAFF could strongly increase proliferation of murine B cells induced by 

engagement of the BcR (13, 43, 62). The source of BAFF that regulates homeostatic survival during B-

cell development is believed to be from non-haematopoietic stromal cells present within BM and/or 

spleen (63). In addition to its effects at the transitional stage of B-cell development, BAFF – and APRIL 

– can enhance survival of terminally differentiated murine PC (44). 

Studies of mice lacking functional BAFF-R, TACI or BCMA revealed that BAFF exerts its pro-survival 

effect during B-cell development predominantly through BAFF-R, because spleens from these mice had 
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a severe reduction in the number of transitional and mature B cells, while B-cell development in mice 

deficient in TACI (64, 65), BCMA (66-68) or both (69) was intact. These findings established the unique 

role played by the BAFF/BAFF-R signalling pathway in regulating B cell survival and homeostasis. The 

impaired survival of developing B cells in mice deficient for BAFF or BAFF-R could be overcome by 

enforced expression of bcl-2 (70) or bcl-xL (71), supporting the proposal that BAFF maintains B cell 

survival by modulating expression of anti-apoptotic molecules. This led to the proposal that signals 

delivered through BAFF-R, in concert with Ag-mediated engagement of the BcR, promotes positive 

selection of transitional B cells and allows for their continued maturation (43, 72). This was supported by 

the findings that signalling through the BcR increased binding of BAFF to murine B cells (73), and an 

intact BcR signal transduction pathway is required for acquisition of BAFF-responsiveness in developing 

B cells (74). 

Human B cells 

In contrast to murine B cells, emerging data suggests that B cells from humans and non-human primates 

are less dependent on BAFF for their development and survival. Unlike murine B cells (72, 75), BAFF 

has minimal effect on the survival of subsets of human B cells, despite the expression of BAFF-R on 

these cells. BAFF only weakly promoted the survival of human memory B cells, but not transitional, 

naïve or PC (45, 46, 48, 53, 58, 76, 77) (Figure 1). It is unclear whether the weak effect that BAFF has 

on the survival of memory B cells is mediated by BAFF-R, TACI or both. However based on the 

dramatic consequences of BAFF-R deficiency in mice, it is plausible that BAFF-R has this function in 

human memory B cells. Consistent with these results were the findings that in vivo blockade of BAFF in 

cynomolgus monkeys had no effect on the numbers of putative transitional B cells and tissue PC, while 

mature peripheral B cells were reduced <2-fold compared to control animals (78-80).  

Despite these species differences in the ability of BAFF to support survival of resting human B cells, 

BAFF (and APRIL) can sustain the viability of (a) naïve B cells stimulated through the BcR, CD21 and 

IL-4R, which then acquire features of Ag-presenting cells (58, 77), and (b) human memory B cells 

stimulated with CD40L/IL-2/IL-10, which develop into plasmablasts (30, 45, 51, 55). This latter finding 
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parallels the ability of BAFF and APRIL to promote survival of plasmablasts arising from activated 

murine B cells in vivo (57, 62, 81, 82). Interestingly, BAFF-R is down-regulated on plasmablasts, while 

expression of TACI is increased and BCMA induced (30, 45, 52, 55). Furthermore, the effect of BAFF 

and APRIL on murine plasmablast survival was reduced in the absence of TACI or BCMA and 

completely abrogated in the absence of both receptors (62). Thus, it is likely that the survival effect 

exerted by BAFF/APRIL on activated B cells as they differentiate into Ig-secreting cells is mediated by 

BCMA and/or TACI (Figure 1). Recent findings have proposed that this is achieved by the induction of 

cyclo-oxygenase 2 and subsequent production of prostaglandin E2, which has known roles in promoting 

survival of multiple cell lineages (58). It is likely that myeloid cells - monocytes, macrophages, DCs - in 

spleen and BM provide the BAFF/APRIL that regulates survival of human and murine plasmablasts (20, 

23, 45, 63, 82). Recently, a novel function of BAFF was revealed by its ability to preferentially promote 

chemotaxis of human memory B cells to CXCL13 (83). Thus, BAFF may have a dual function on 

memory B cells by causing a mild increase in their survival (45), coupled with a greater migratory 

capacity to lymphoid homing chemokines (83). The production of both CXCL13 and BAFF by cells 

within lymphoid follicles (i.e. stromal cells, FDC, myeloid cells), and the enhanced response of memory 

B cells to both ligands, may contribute to the rapid response of memory B cells, relative to naive B cells, 

that is characteristic of secondary responses to TD Ags.  

(b) Class Switch Recombination 

Human B cells 

Following Ag stimulation, naïve B cells can undergo class switch recombination (CSR) to express and 

produce the downstream isotypes IgG, IgA or IgE. This allows versatility in both function and 

distribution of the Ig molecule, while retaining Ag specificity (3). CSR from C! to C#, C! and C$ occurs 

in response to signals delivered through CD40/CD40L, usually in combination with specific cytokines, 

or TLR ligands (84-86), and is accompanied by characteristic molecular events such as induction of 

activation-induced cytidine deaminase, a DNA-editing enzyme necessary for CSR, and expression of Ig 

heavy chain germline transcripts and switch circles (84-86). These events can be detected in human B 
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cells when stimulated with BAFF or APRIL alone, and are greatly increased in B cells treated with 

BAFF or APRIL together with IL-4 or IL-10 (22, 29). BAFF may further contribute to CSR by inducing 

B cells to secrete IL-10 (87), a known switch factor for production of IgG and IgA by human B cells (7). 

Although CSR from C! to C$ was not observed when human B cells were exposed to BAFF or APRIL 

alone, switching to IgE did occur when combined with IL-4 (22) (Table I). Interestingly, BAFF or 

APRIL alone were not sufficient to induce secretion of switched Ig isotypes by stimulated human B 

cells; rather, Ig secretion required additional signals, such as cross-linking of the BcR together with 

specific cytokines (IL-4, IL-10)(22, 29). Notably, APRIL - more so than BAFF - favoured production of 

IgA2 by human B cells stimulated with IL-10 and the TLR5 ligand flagellin, while levels of IgA2 

secretion were further enhanced by the combination of BAFF together with APRIL (29). BAFF and 

APRIL also contribute to humoral immune responses by enhancing CSR, acquisition of expression of 

switched Ig isotypes IgG and IgA, as well as their secretion, by naïve B cells activated by EBV (32) or 

the TLR3 and TLR9 ligands dsRNA and CpG, respectively (88, 89) (Table I).  

The in vivo relevance of the in vitro findings of a role for BAFF and APRIL in regulating Ig CSR has 

been examined in the context of interactions between BAFF/APRIL-producing cells, such as DC and 

epithelial cells, and B cells. It has been proposed that TLR ligands present in microorganisms stimulate 

innate immune cells (DCs) and non-haematopoietic cells (eg mucosal epithelial cells) to produce BAFF 

and APRIL. TLR-stimulated epithelial cells can also produce TSLP, which acts in a paracrine loop to 

augment TLR-induced production of BAFF by DCs. In addition to activating epithelial cells and DCs, 

microbial stimuli can activate B cells through corresponding TLRs (eg TLR3, TLR9), thereby directly 

initiating CSR. Thus, BAFF and APRIL, together with TLR ligands, activate CSR and, when combined 

with DC-derived cytokines including IL-10, co-operate to elicit secretion of switched Ig isotypes by 

responding B cells, resulting in the generation of an integrated humoral immune response (22, 28, 29, 85, 

88, 89) (Table I).  
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Murine B cells 

BAFF and APRIL also induce murine B cells to undergo CSR in vitro (90, 91). Specifically, stimulation 

of murine B cells with BAFF or APRIL resulted in the secretion of IgG1 and IgA. In contrast, IL-4 was 

required for production of IgE by BAFF- or APRIL-stimulated murine B cells (90, 91). Analyses of 

gene-targeted mice have revealed important and Ig isotype-specific roles for TACI and BAFF-R in this 

process. Both APRIL and BAFF failed to induce IgA secretion by naïve B cells from TACI
-/-

 mice, but 

no such failure occurred in mice whose B cells either expressed a non-functional BAFF-R or lacked 

BCMA (91). This suggests that TACI is exclusively responsible for eliciting CSR to IgA in response to 

BAFF or APRIL, and is consistent with impaired switching to IgA in vivo in APRIL-deficient mice (90). 

TACI-deficient B cells also failed to secrete IgG1 and IgE in response to APRIL plus IL-4, while the 

response of B cells lacking BCMA or a functional BAFF-R was intact (91). Thus, TACI is also capable 

of mediating APRIL-induced switching to IgG1 and IgE. Despite the inability to respond to APRIL, 

TACI
-/-

 B cells synthesised normal levels of IgG1 and IgE in response to stimulation with BAFF/IL-4 

(91). This study, therefore, demonstrated that in the absence of TACI, production of these isotypes can 

be compensated by the BAFF/BAFF-R signalling pathway, revealing redundancy in the abilities of both 

BAFF-R and TACI to mediate switching to IgG1 and IgE in the presence of corresponding ligands. 

The relative roles of BAFF-R and TACI in inducing CSR in human B cells by BAFF and APRIL remain 

incompletely defined. Curiously, stimulation with the TLR9 agonist CpG strongly induces expression of 

TACI on human naïve B cells (52). Since BAFF is capable of augmenting CSR induced in human B cells 

by CpG (88), it is tempting to speculate that this is achieved by BAFF interacting with TACI. This is 

supported by the finding that siRNA-mediated knock-down of TACI expression on human B cells 

abrogated the ability of APRIL to induce IgA production by these B cells, however production of IgG 

was unaffected (92). Taken together, it appears that TACI is required for APRIL-induced production of 

IgA, but not IgG, whereas BAFF-R contributes to BAFF-mediated CSR to IgG and IgA by human B 

cells. This is discussed further (see below – Immunodeficiency) in the context of humans with loss-of-
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function mutations in TACI whose B cells failed to secrete IgA in response to activation with either 

APRIL or BAFF (93).  

Aberrant expression of BAFF, APRIL and BAFF receptors in human disease 

Dysregulated expression and/or function of BAFF, APRIL and/or their receptors has been implicated in 

the pathogenesis of a diverse range of human diseases including autoimmunity, haematological 

malignancies and immunodeficiencies. 

Autoimmunity and related diseases 

BAFF, APRIL, and BAFF/APRIL multimers are elevated in serum and synovial tissue of patients with 

autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren’s 

syndrome (SjS) (94-102), scleroderma (103), systemic sclerosis (104, 105), atopic dermatitis (106), 

bullous pemphigoid (107, 108), and Wegener’s granulomatosis (109). BAFF has also been detected in 

neurological lesions of patients with multiple sclerosis (MS) (24). In general, the increased levels of 

serum BAFF and APRIL were associated with increased levels of autoantibodies (95-97, 99, 101) or 

disease activity (105, 106). A recent study also reported detection of BAFF in lesions of females with 

endometriosis, but not in control endometrial tissue, nor patients with other gynaecological conditions 

such as adenomyosis and uterine fibrosis (110). The presence of BAFF in endometriosis lesions was 

accompanied by infiltration of substantial numbers of BCMA-expressing plasmablasts, and substantially 

elevated levels of serum BAFF (110). These findings suggest that an autoimmune/inflammatory 

component contributes to some of the pathological features of endometriosis. 

The cell-type responsible for the increased production of BAFF in some of these conditions has been 

identified. BAFF is produced by T cells and macrophages infiltrating inflamed salivary glands in SjS 

(111), and by astrocytes (24) and monocytes (112) in MS. In RA patients, macrophages exclusively 

produced BAFF, while DC secreted APRIL (101). BAFF-expressing macrophages were also detected in 

lesions in endometriosis (110). Neutrophils, which can be detected in inflamed synovium, may also 

contribute to elevated levels of BAFF in RA (101). Several other cytokines, such as soluble CD40L, IL-

4, IL-6, IFN-! and IL-10, are elevated in autoimmune conditions (99, 113-116). Furthermore, there is a 
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large increase in the level of expression of CD40L on T cells and B cells from SLE patients (117). 

Interestingly, most of these cytokines can augment production of BAFF by myeloid cells in vitro (21-24). 

Thus, it is likely that myeloid cells exposed to CD40L, IFN-! and IL-10 are responsible for the increased 

serum levels of BAFF in SLE.  

In autoimmune diseases, the affected tissues are usually non-lymphoid, and are thus devoid of immune 

cells. However, inflamed synovial tissue and salivary glands from RA and SjS patients contains large 

numbers of infiltrating lymphocytes which form GC-like structures comprised of B cells, T cells, DC and 

FDC (118, 119). The formation of these ectopic GC-like structures likely results from aberrant 

expression of molecules such as TNF!, lymphotoxin, CXCL13, CCL19 and CCL21, that are required for 

normal lymphoid neogenesis (80, 119, 120). It was recently revealed that the incidence of ectopic GC in 

inflamed tissues in RA and SjS correlates with the levels of lymphotoxin, CCL19, BAFF and APRIL (98, 

99, 101, 115). Thus, it is likely that BAFF and/or APRIL plays a critical role in the maintenance of 

ectopic GCs in autoimmune patients, by eliciting (i) pro-survival effects on autoreactive B cells and (ii) 

inducing them to produce class switched pathogenic autoantibodies, which are characteristic of humoral 

autoimmune conditions. The ability of BAFF to enhance chemotaxis of memory B cells may also 

contribute to the infiltration of effector B cells to sites of autoimmune-mediated inflammation (83).  

B cell malignancies 

Numerous studies have provided convincing evidence that BAFF/APRIL may contribute to malignancies 

of mature B cells (non-Hodgkin’s lymphoma [NHL], chronic lymphocytic leukemia [B-CLL], Hodgkin’s 

lymphoma [HL]), plasmablasts (Waldenstrom’s macroglobulinaemia [WM]) and PCs (multiple myeloma 

[MM]) . Malignant B cells from these patients are all capable of binding soluble BAFF and, in some 

cases, APRIL (33, 47, 49, 50, 54, 56, 121-124). However, the receptor expression profile of these 

malignant cells differed as NHL (123), B-CLL (49, 121) and WM (124) B cells co-express BAFF-R and 

TACI, while HL and MM cells preferentially expressed BCMA and TACI (47, 54, 56, 125). In contrast 

to NHL, B-lymphomas in the central nervous system exhibited a heterogeneous phenotype, with variable 

expression of BAFF-R, TACI and BCMA (24). Malignant B cells isolated from patients with B-CLL 
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(49, 121, 126), NHL (50, 122, 123), HL (54), MM (47, 56) and WM (124) were all capable of 

responding to the stimulatory effects of BAFF and/or APRIL in vitro, demonstrating expression of 

functional receptors.  

 

A possible role of BAFF and APRIL in human B cell malignancies may lie in their aberrant expression 

and production. First, expression of BAFF and APRIL is greater in B-CLL (49, 121, 127), NHL (33, 50) 

and MM (47, 56, 126) than in normal B cells. Second, levels of serum BAFF and APRIL are elevated in 

patients with NHL (122, 123), B-CLL (121, 127) and WM (124). Notably, those NHL patients with the 

highest levels of serum BAFF/APRIL had reduced survival and poorer prognosis than those with lower 

levels (123, 128). A complementary mechanism whereby BAFF may contribute to the development of 

some lymphomas came from the observation that EBV infection of primary human B cells induces 

expression of both BAFF and APRIL (32). The significance of this is that several B cell malignancies 

develop following immortalisation of normal human B cells by EBV (129). Interestingly, patients with 

SjS are predisposed to B cell malignancies, particularly NHL (99). Because patients with NHL have 

increased levels of serum BAFF (122, 123), it is tempting to speculate that increased levels of serum 

BAFF in SjS contributes not only to the development of autoimmune manifestations of this syndrome, 

but also to B cell malignancies frequently observed in these patients (99). Third, the microenvironment 

of the malignancy may improve survival and persistence of malignant B cells. For instance, BAFF was 

detected in the BM of myeloma patients at higher levels than that observed for samples of normal BM 

(47); cells infiltrating tissue-restricted NHL and HL express and secrete high levels of BAFF/APRIL 

which promotes the viability of the malignant B cells (54, 130); nurse-like cells, which can be isolated 

from B-CLL patients, contain abundant amounts of BAFF and APRIL and improve the survival of B-

CLL cells (126); and tumour-infiltrating neutrophils are the main source of APRIL in cases of NHL 

(128).  

BAFF protects normal B cells from apoptosis by modulating expression of members of the bcl-2 family 

of molecules (reviewed in (18, 19)). This is also likely to be the mechanism by which BAFF and APRIL 
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preserve the viability of malignant B cells. In vitro exposure of B cells from patients with NHL, HL, B-

CLL or MM to BAFF or APRIL increased expression of the pro-survival proteins bcl-2, mcl-1 and bcl-

xL and decreased the pro-apoptotic regulator bax (50, 54, 56). Similarly, survival, and expression of pro-

survival proteins, were reduced when malignant B cells were cultured in the presence of BAFF 

antagonists (33, 49, 54, 56). Taken together, it is possible that aberrant and/or excessive production of 

BAFF or APRIL by malignant B cells themselves (ie autocrine) or by supporting cells present within the 

microenvironmental niche occupied by the malignant B cells (ie paracrine) may facilitate their growth 

and survival. Consequently, blocking interactions between BAFF and APRIL and their receptors may be 

a feasible therapeutic approach for treating some B cell malignancies.  

TACI mutations in Immunodeficiency 

The central role of the BAFF family of molecules in regulating B cell survival and function has led 

naturally to an examination of their place in human humoral immunodeficiencies. This endeavour has 

concentrated on two poorly understood adult immunodeficiency disorders: common variable 

immunodeficiency (CVID) and IgA deficiency (IgAD). CVID is the most common adult 

immunodeficiency requiring treatment. It is a heterogeneous disorder manifest by 

hypogammaglobulinaemia resulting in recurrent upper and lower respiratory tract and gastrointestinal 

infections (131, 132). Most cases occur sporadically, but 10-20% have a family history; kindreds with 

both autosomal dominant and recessive genetics have been described. About one-third of patients will 

have lymphoproliferation (lymphadenopathy, splenomegaly) as part of their presentation, and there is a 

heightened prevalence of autoimmunity. IgAD is a common immunodeficiency, accounting for about 

1:600 patients in the Western world, and is characterised by low to absent serum and mucosal 

concentrations of IgA. The condition is frequently asymptomatic, but those who develop infections 

typically display a similar spectrum to CVID (131, 132). 

The last decade has seen the discovery of a number of well-defined genetic defects that account for 

CVID in very small numbers of patients. These include deficiency of ICOS in nine reported cases, most 

likely involving common ancestry (133, 134), and deficiency of CD19 in five other patients (135, 136) . 
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There are also patients with ‘leaky’ mutations in Btk (137, 138) and SH2D1A (139-141), who present 

similarly to CVID but are in fact atypical cases of X-linked agammaglobulinaemia and X-linked 

lymphoproliferative disease, respectively. On the other hand, the vast majority of CVID patients remain 

unexplained genetically and pathophysiologically, including those with a positive family history. 

Genetics of TACI mutation in humoral immunodeficiencies 

In 2005, two groups independently examined cohorts of patients with CVID or IgAD for mutations in 

TNFRSF13b, which encodes TACI (142, 143). Mutations were found in 5-10% of patients with familial 

and sporadic CVID (Fig 1), and included homozygous and heterozygous cases. Of 162 CVID patients 

analysed by Salzer et al. (142), 3/27 familial and 10/135 sporadic cases had TNFRSF13b mutations; all 

patients had low IgG levels at diagnosis, whilst most also had low IgA and about half had low IgM 

levels. Pneumococcal antibody responses were generally poor. B-cell numbers were preserved, but there 

was a reduction in memory B cells. Lymphoproliferation and autoimmunity were frequent in these 

patients, although these features are also common in unselected cohorts of patients with CVID (131, 

132). These findings were largely supported by Castigli et al. (143), who documented TNFRSF13b 

mutations in 4/19 CVID patients (3 homozygous and one compound heterozygote), all of whom had 

reduced IgG and IgA levels, normal IgM, and poor pneumococcal antibody responses. A positive family 

history was noted in three of these cases, the pedigree also showing family members harbouring identical 

TACI mutations that manifest phenotypically as either CVID or IgAD. Furthermore, one of the 16 

patients with IgAD also harboured a TACI mutation, with perfect segregation with IgAD in that family. 

No TACI mutations were found in 50 control subjects. 

The six mutations uncovered in these two studies either had, or were predicted to have, critical effects on 

TACI function. The most frequent mutation, C104R, altered a cysteine residue essential for protein 

folding and thus abolished BAFF binding. A181E changed a neutral amino acid to a charged residue in 

the transmembrane region, S144X and 204InsA abolished protein expression, R202H was predicted to 

alter TACI interaction with CAML, and S194X resulted in a truncated intracellular domain due to the 

introduction of a premature stop codon. 
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These genetic studies were expanded by both groups in follow-up studies published in 2007 (144, 145). 

The first report included up to 852 CVID patients in cohorts spanning Sweden, Germany and the USA 

(144). TNFRSF13b was found to be a highly polymorphic gene, with nucleotide differences frequently 

detected in normal subjects, including the same mutations previously associated with CVID (Figure 2). 

Only C104R and A181E were significantly associated with CVID, although in certain populations (eg 

Swedish patients for C104R and German patients for A181E), the association did not reach significance. 

204InsA was rare, being found only in two CVID patients and no controls. The report also studied 474 

Swedish IgAD patients, with only R202H being found more frequently than in the control population; 

however family studies showed no segregation between this mutation and IgAD. A similar study of 212 

CVID patients and 124 controls by Castigli et al. (145) largely confirmed these findings, with only 

C104R and A181E being significantly associated with CVID, although they reported a number of rare 

TACI alleles that were found only in CVID patients. All 34 patients with IgAD had wild type 

TNFRSF13b, and taken together with the Swedish study, essentially excluded a role for TACI in this 

condition. 

Most recently, another expanded CVID cohort (which included some patients previously reported in 

(144)) was studied (146). TNFRSF13b mutations were found in 50/602 (6%) CVID patients compared 

with 12/589 (2%) of controls. Biallelic mutations were present in 11 subjects, all of whom had CVID, 

whereas none of the controls had biallelic mutations. C104R was significantly associated with CVID, but 

this was not found for A181E. Again, a number of rare TNFRSF13b mutations were only found in CVID 

patients. Six families of CVID patients with heterozygous TNFRSF13b mutations were studied, and three 

showed segregation with CVID whilst the remainder did not, suggesting that in the heterozygous state, 

the C104R mutation might be acting as a disease modifier rather than being directly causative. 

Taken together, the conclusions from these studies are threefold. First, homozygous TNFRSF13b 

mutations have only been found in patients with CVID. Second, some rare heterozygous TNFRSF13b 

mutations have also so far only been found in CVID, leaving open the possibility that these may truly be 

causative in the heterozygous state. Third, there is a significant association between C104R and possibly 
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A181E with CVID, albeit with incomplete penetrance, such that the mutation is more frequent in CVID 

but may also be found in healthy subjects. 

Functional implications of TNFRSF13b mutations in B-cell responses 

These genetic studies immediately posed questions as to the functional changes that accompany 

alterations in TACI structure that account for adult-onset loss of Ig production, the hallmark of CVID. 

Models to answer this question must not only explain the physiology of complete loss of TACI function, 

as is the case in patients with biallelic mutations, but also the weaker dominant negative effect in 

heterozygotes. 

Complete loss of TACI function has been studied in at least two independently-generated strains of gene-

targeted mice (65, 147, 148). TACI-deficient mice have normal B cell development, yet B-cell numbers 

were elevated and proliferative responses were increased, with one strain showing a propensity for the 

development of B-cell lymphoma. These findings implied a negative regulatory role for TACI (65, 147, 

148). Such a role was supported by studies in which an agonistic anti-TACI mAb was used to stimulate 

human naïve B cells concomitantly activated with CD40L, BAFF or anti-BAFF-R (149). TACI 

activation consistently resulted in decreased proliferation and IgG production by the activated B cells. 

Furthermore, TACI expression on B cells increased during activation, leading the authors to speculate 

that TACI might function as a delayed brake on B-cell function analogous to the role of CTLA4 on T 

cells (149). 

On the other hand, a positive role for TACI in type II T-cell independent Ab responses has also been 

demonstrated in TACI
-/-

 mice, which have poor pneumococcal vaccine responses and low IgA and IgM, 

but normal IgG, levels. There is also an established role for BAFF and APRIL in isotype switching by 

human and murine B cells (22, 28, 29, 89, 91), although redundancy in the BAFF/APRIL receptor 

system makes specific roles for each receptor in human B-cell differentiation difficult to isolate. Some 

progress has been made by Sakurai et al. (92), who explored the differential roles of the two main APRIL 

receptors on mature B cells, TACI and HSPG. They first demonstrated that APRIL bound equally to 

each of these receptors, then examined responses of naïve B cells to stimulation with CD40L, BAFF and 
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APRIL in the presence of (i) siRNA to diminish TACI expression and/or (ii) heparitinase to eliminate 

HSPG binding. Engagement of TACI in isolation was insufficient to increase proliferation and Ig 

production by B cells. However, abrogation of TACI expression increased B-cell responses to BAFF, 

consistent with a negative regulatory role for TACI, as demonstrated in earlier experiments. It was shown 

further that either engagement of HSPG by APRIL, or BAFF-R by BAFF, was sufficient for IgG 

production and proliferation, but simultaneous stimulation of both TACI and HSPG was necessary for 

IgA production, such that loss of either abrogated this response (Figure 3). Based on these studies, one 

would expect that in vivo loss of TACI function could result in impaired IgA production (although 

BAFF-R stimulation could potentially compensate for this loss), whilst there should be minimal effect on 

IgG production and B-cell proliferation, if not potential enhancement (in the case of BAFF) resulting 

from loss of negative regulation. This would be consistent with findings from studies of murine B cells 

which revealed that TACI is predominantly responsible for eliciting CSR to IgA in response to BAFF 

and APRIL (91). 

In vitro studies of B-cell function in human homozygous TACI mutants have been limited. Original 

studies demonstrated that the C104R, but not A181E, mutation abolished BAFF binding when expressed 

in the human embryonic kidney cell line 293, although APRIL binding could not be studied due to the 

high expression of HSPG by these cells (143). EBV-transformed B-cell lines from TACI mutant 

homozygotes (C104R, S144X) failed to bind APRIL in a staining system that neutralised HSPG binding. 

Not surprisingly, B cells isolated from TACI mutant homozygotes failed to respond to APRIL 

stimulation in terms of B-cell proliferation and CSR (142), again in the setting of neutralisation of 

HSPG. Thus, the lack of functional TACI expression seems to abrogate the positive effects of APRIL in 

the absence of HSPG, but the effect of homozygous mutations on the negative regulatory effects 

mediated by TACI remains to be determined, as do the functional changes in the setting of intact HSPG 

binding. 

In heterozygotes, expression of a mutant surface protein need not necessarily alter cellular response to 

ligand, which could simply bind to wild-type receptors, notwithstanding the possibility of 
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haploinsufficiency. However Garibyan et al. (150) demonstrated that murine TACI assembled into 

trimers within the endoplasmic reticulum, independent of ligand binding, and that C104R mutant TACI 

was co-expressed in a trimeric receptor complex with wild type TACI. Thus, in the heterozygous state, 

theoretically only one in eight trimers would be fully functional. Ligand binding studies demonstrated 

normal APRIL binding to EBV-transformed B-cell lines from TACI heterozygotes (142, 146), although 

others found binding was variable even between patients with the same mutation (151). Garibyan et al. 

demonstrated normal BAFF binding to the hybrid mutant C104R/wt TACI heterotrimer (150), but there 

was a reduction in NF%B signalling in response to BAFF, consistent with a dominant negative effect. 

These findings are reminiscent of the effects of mutations in the gene encoding human CD95, which 

demonstrated a requirement for pre-association of CD95 monomers into trimeric structure and that such 

assembly was compromised by heterozygous mutations in CD95 (152). 

Given that a degree of receptor dysfunction accompanies the heterozygous state, one might therefore 

expect that functional studies in heterozygotes might be similar to homozygous deficiency. Such studies 

have generated conflicting results, which in general do not seem to reflect in vitro studies in normal B 

cells. Early reports demonstrated that B cells from TACI heterozygotes failed to produce IgG or IgA in 

response to APRIL, but also enigmatically failed to produce IgA in response to BAFF (143). On the 

other hand, B cells from CVID patients themselves often display impaired function in vitro, as 

demonstrated by Zhang et al. who showed that whilst B cell proliferation and isotype switching is 

variably impaired in C104R heterozygotes, this was not substantially different from CVID patients with 

wild-type TACI (151). Furthermore, family members harbouring heterozygous C104R mutations but 

without CVID showed normal B cell responses! This study (151) has important implications in terms of 

choosing appropriate controls for functional analysis, although it did not use purified B cell cultures and 

relied on relatively insensitive proliferation assays.  

Despite progress in the field of TACI mutation and CVID, the area continues to generate controversy. 

There seems little doubt that homozygous TACI mutations result in CVID (146), but there is also strong 

association in the heterozygous state particularly with the C104R and A181E mutations. Biochemical 
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and functional data showing that the heterozygous state also impairs TACI signalling is consistent with 

this association (150, 151). Although functional studies support a possible role for TNFRSF13b 

mutations in dysregulated CSR, they fall far short of explaining the CVID phenotype, given the 

redundancies in the BAFF/APRIL receptor system, since studies in normal B cells suggest that BAFF-R 

signalling generally should be able to compensate for loss of TACI function, at least in terms of signals 

provided by BAFF. Furthermore the functional effects of TNFRSF13b mutation in the setting of an intact 

HSPG receptor have not been studied. However the role of TACI in CSR in normal human B cells in 

vivo seems minor in comparison to BAFF-R and HSPG, studies of which show a non-redundant role only 

in IgA production, whilst the genetic association with IgAD has been largely refuted. If defects can be 

demonstrated, the link between TACI and CVID may lie in differential expression of BAFF versus 

APRIL in specific microenvironments, which may affect CSR or B-cell or PC longevity. Murine and 

human studies imply that TACI has predominantly a negative regulatory role in B-cell function, hence 

loss of function could result in B-cell over-activity, possibly explaining the propensity of affected CVID 

patients to develop lymphoproliferation, although it is unclear whether this is any more prevalent in 

CVID patients who have TACI mutations compared with those with wild-type TACI. Finally, the 

observation that B cells from CD40L deficient patients with hyper-IgM syndrome fail to undergo CSR in 

vivo despite an intact BAFF/APRIL system (reviewed in (153)) would suggest either that the latter 

pathway is of relatively minor importance, or that it is only relevant to B cells at a stage distal to CD40L 

activation. Further studies on specific B cell subsets from heterozygous and homozygous C104R TACI 

mutant patients, along with carefully chosen controls, are needed to resolve these conflicting data. 

 

Conclusions 

It is well established that molecules expressed and produced by stromal cells, CD4
+
 T cells, myeloid 

cells (eg DC), and FDC are essential initially for the development of pluripotent stem cells into mature 

naïve B cells, and subsequently for their differentiation into effector cells, such as memory and Ig 

secreting cells. The last decade has seen an explosion in our understanding of the fundamental roles of 
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BAFF, APRIL and the receptors BAFF-R, TACI, BCMA and HSPG in these processes. It is now clear 

that specific interactions between these receptor/ligand pairs have important roles in B-cell development, 

CSR, and the maintenance of Ig-secreting cells. We have also gained an enormous appreciation that 

dysregulated signalling through these receptor/ligand complexes may underlie the development of a 

diverse array of human diseases, including autoimmunity, haematological malignancies and 

immunodeficiency. However, these studies have also highlighted the complexities of the interactions 

between these molecules, and many questions and issues remain unresolved. These include: the specific 

role of BCMA and HSPG; the apparent paradoxical ability of TACI to deliver both positive and negative 

signals to activated B cells; the signals that modify and regulate expression of receptors for BAFF and 

APRIL, as well as the production of these cytokines themselves; the exact mechanisms whereby aberrant 

interactions between these molecules contribute to the development of human diseases; and whether or 

not BAFF has the same role in the development of human B cells as it does in models of murine B-cell 

ontogeny. These unresolved issues, together with the targeting of the BAFF/APRIL/receptor axis as a 

means of treating autoimmunity and B-cell malignancy (78, 80, 154-156), will ensure a continued focus 

on the biology and regulation of function of members of the BAFF family on immune responses for at 

least the next decade. 
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Table I: Induction and amplification of class switch recombination and Ig secretion by BAFF and 

APRIL 

 

Ig isotype Induced by Enhanced by Secreted in 

response to: 

Source of 

BAFF/APRIL 

Reference 

IgG1, IgG2 • BAFF, APRIL • IL-4, IL-10 

IgG3 • BAFF/IL-4 

• APRIL/IL-4 

• BAFF/IL-10 

• APRIL/IL-10 

ND 

IgG4 BAFF + IL-4 

APRIL + IL-4 

ND 

Total IgG:  

• BAFF/anti-Ig ± 

IL-15 

• APRIL/anti-Ig 

± IL-15 

IgA1, IgA2 • BAFF  

• APRIL 

• TGF-" Total IgA:  

• BAFF/anti-Ig ± 

IL-15 

• APRIL/anti-Ig 

± IL-15 

IgE • BAFF/IL-4 

• APRIL/IL-4 

ND ND 

DC stimulated 

with 

• CD40L 

• IFN-! 

• IFN-# 

Monocytes " 

stimulated with 

• LPS 

• IFN-! 

• IFN-# 

(22, 29) 

IgA2 • APRIL/IL-10 • TLR5 ligand 

(Flagellin) 

APRIL, IL-10, • 

Flagellin 

• intestinal 

epithelial cells 

stimulated with 

TLR5 ligand ± 

TSLP 

(29) 

IgG1, G2, G3 • CpG (TLR9 

ligand) 

• IL-10 Total IgG 

• BAFF 

• IFN-! 

stimulated DC 

(88) 

IgG1, IgG2, 

IgG3, IgA1, 

IgA2, IgE 

• EBV • BAFF 

• APRIL 

ND • EBV-infected 

B cells 

(32) 

IgG1 • TLR3 ligand 

(poly I:C; ds 

RNA mimic) 

• IL-10 Total IgG and 

IgA 

• poly I:C/ 

IL10/BAFF 

• TLR3-

stimulated 

plasmacytoid 

and mucosal DC 

(89) 

 

ND – not done 
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Figure 1: Expression of receptors for BAFF and APRIL, and their functions, during human B cell 

development and differentiation 

The expression of BAFF-R, TACI and BCMA at the different stages of B cell development (immature ! 

transitional B cell) and differentiation (mature B cell ! GC ! memory B cell/PC), as well as the 

function of BAFF/APRIL at distinct stages of human B-cell maturation, are indicated.  

* indicates uncertainty, since GC B cells have been reported to lack or express TACI 
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Figure 2. Mutations within the TNFRSF13B gene that encodes TACI 

Missense mutations affecting the affecting the open reading frame of TACI are shown. The two most 

closely associated with disease highlighted.  
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Figure 3. Relative roles of BAFF-R, TACI and HSPG in B-cell isotype switching 

This model is based on experiments reported by Sakurai et al (92). 

 


