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ABSTRACT
Fragility fracture is a serious public health problem in the world. The risk of fracture is determined by genetic and nongenetic clinical risk

factors. This study sought to quantify the contribution of genetic profiling to fracture prognosis. The study was built on the ongoing

Dubbo Osteoporosis Epidemiology Study, in which fracture and risk factors of 858 men and 1358 women had been monitored

continuously from 1989 and 2008. Fragility fracture was ascertained by radiologic reports. Bone mineral density at the femoral neck was

measured by dual-energy X-ray absorptiometry (DXA). Fifty independent genes with allele frequencies ranging from 0.01 to 0.60 and

relative risks (RRs) ranging from 1.01 to 3.0 were simulated. Three predictive models were fitted to the data in which fracture was a

function of (1) clinical risk factors only, (2) genes only, and (3) clinical risk factors and 50 genes. The area under the curve (AUC) for model 1

was 0.77, which was lower than that of model II (AUC¼ 0.82). Adding genes into the clinical risk factors model (model 3) increased the

AUC to 0.88 and improved the accuracy of fracture classification by 45%, with most (41%) improvement in specificity. In the presence of

clinical risk factors, the number of genes required to achieve an AUC of 0.85 was around 25. These results suggest that genetic profiling

could enhance the predictive accuracy of fracture prognosis and help to identify high-risk individuals for appropriate management of

osteoporosis or intervention. � 2011 American Society for Bone and Mineral Research.
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Introduction

Fracture is an important public health problem because,

among others things, it is common in the general population

and is associated with increased risk of death. Approximately

44% of women and 25% of men aged 50 years will sustain a

fracture during their remaining lifetime.(1) Individuals with a

preexisting fracture are at increased risk of subsequent fracture(2)

and death.(3) Pharmacologic treatment of individuals with a

preexisting fracture can reduce further fracture(4) and mortality

risk.(5)

Therefore, a major priority in osteoporosis research at present

is to develop prognostic models for identifying individuals

who have high risk of fracture. Using established clinical risk

factors, a number of prognostic models have been developed

and implemented recently.(6–8) The predictive accuracy of these

models has been less than perfect, with the area under the

receiver operating characteristic curve (AUC) ranging between

0.70 and 0.80.(7,8) Most prognostic models have low sensitivity

and high specificity. Thus there is room for further improvement

of prognostic accuracy of the current models.

Fracture segregates within families, but the segregation does

not follow the Mendelian law. Women whose mothers had

sustained a hip fracture have a twofold increase in risk of hip

fracture compared with controls,(9) but the penetrance is not

complete. Indeed, approximately 25% to 35% of the variance in

the liability to fracture was attributable to genetic factors.(10,11)

Moreover, genetic factors also account for a large proportion of

variance in risk factors for fracture, such as bone mineral density

(BMD),(12) bone loss,(13) quantitative ultrasound,(14) and bone

turnover markers.(15) Thus genetic factors may be useful in the

prognosis of fracture. However, studies in the fields of

diabetes(16) and cancer(17) suggested that genetic profiling

contributed minimally to the prognosis of these diseases.
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Although it is clear that genetic factors play a role in the

pathogenesis of fracture liability, it is less clear which specific

genes may be associated with fracture risk. Indeed, several

studies during the past two decades have suggested a number

of candidate genes for osteoporosis,(18) but the lack of

independent replication has been a hindrance to progress of

the field. In recent years, genome-wide association studies

have been conducted, and a number of novel genes have been

found to be associated with fracture risk. A meta-analysis of 150

candidate genes found only 4 genes that were significantly

associated with fracture.(19) Two common features of these

genes are that their allelic frequency in the general population is

highly variable (ranging from 1% to 61%) and that the effect size

is very small. In the presence of such small effect size, it can be

anticipated that the contribution of any single gene or single-

nucleotide polymorphism (SNP) to fracture prognosis is minimal.

We hypothesize that a genetic profiling or combination of

several genes can improve the prognostic accuracy of fracture.

This study therefore was undertaken to test the hypothesis by

addressing the following two specific questions: (1) What is the

contribution of a single gene to fracture risk prediction? and

(2)What degree of fracture risk can be predicted by simultaneous

testing of multiple genetic variants (ie, genetic profiling)?

Study Design and Methods

Study setting and participants

This study was built on the ongoing prospective Dubbo

Osteoporosis Epidemiology Study (DOES), in which details of

protocol and study design have been described previously.(20–23)

Briefly, in 1989, all men and women aged 60 years or above (as

of 1989) living in Dubbo, a city of approximately 32,000 people

400 km northwest of Sydney (Australia), were invited to parti-

cipate in an epidemiologic study. At that time, the population

consisted of 1581 men and 2095 women aged 60 years or older,

of whom 98.6% were white and 1.4% were indigenous aborigi-

nal. These individuals were all invited to participate in DOES. This

study was approved by the St Vincent’s Campus Research Ethics

Committee, and written informed consent was obtained from

each participant.

Dubbo had been selected for the study because the age

and gender distribution of its population closely resembled the

Australian population,(22) and it is relatively isolated in terms of

medical care so that virtually complete ascertainment of all

fractures in the target population is possible.

Assessment of clinical risk factors

At baseline, bone mineral density (BMD, g/cm2) was measured at

the lumbar spine or femoral neck (FN) by dual-energy X-ray

absorptiometry (DXA) initially using a DPX densitometer (GE-

Lunar Corp., Madison, WI, USA). The radiation dose with this

method is less than 0.1mGy. The coefficients of reliability of BMD

in our institution in normal subjects are 0.96 and 0.98 at the

proximal femur and lumbar spine, respectively.(24) In this analysis,

baseline femoral neck BMD, not lumbar spine BMD, was used

because the former is minimally affected by degenerative

changes that may artificially elevate BMD.

Individuals also were interviewed by a nurse coordinator, who

administered a structured questionnaire to obtain data including

age, any history of fracture after the age of 50 years, and history

of falls in the preceding 12 months. Anthropometric variables (ie,

height and weight) were measured at baseline.

Ascertainment of fracture

The incidence of fracture was ascertained during the period

of follow-up, which had taken place between 1989 and 2008.

Low-trauma and nonpathologic fractures were considered the

primary outcome of this study. Fractures occurring during the

study period were identified for residents of the Dubbo local

government area through radiologists’ reports from the two

centers providing X-ray services, as described previously.(20,21)

Fractures were included only if the report of fracture was definite

and, on interview, had occurred with low trauma (eg, fall from

standing height or less). Fractures clearly owing to major trauma

(eg, motor vehicle accidents), those owing to underlying diseases

(eg, cancer or bone-related diseases), or those of digit, skull, or

cervical spine were excluded from the analysis. This study did not

include morphometric vertebral fractures.

Simulation of genotypes

With the number of fractures and nonfractures that have been

observed during the study period, we simulated 50 genes with the

following assumptions: (1) the allele frequency of the genes ranged

between 0.01 and 0.60, (2) the relative risk ranged between 1.1 and

3.0, and (3) the genes were independent from each other. We

specified the parameters of simulation such that genes with low

allele frequency have greater relative risk than genes with high

allele frequency (Supplemental Table S1). Since we know the

number of fractures and nonfractures in the study, the simulation

of genotypes was based mainly on two parameters: allele

frequency and relative risk. Let the incidence of fracture be p; the

allele frequencies f ¼{f1, f2,. . ., fM}, where fi corresponds to the

ith gene; and the relative risk RR¼ {RR1, RR2,. . ., RRM} of the

heterozygous genotype corresponding to each gene. Assuming

that each single gene has two alleles and that all genotypes were

in Hardy-Weinberg equilibrium, the number of fractures and

nonfractures for each genotype in the population can be

determined from the parameter f. For each gene, a vector of

length N was created containing the genotypes corresponding to

N individuals, with proportion of each genotype as specified by

the parameter f. Each subject was assigned a genotype by

randomly sampling (without replacement) this vector.

The relative risk of fracture for each risk allele was simulated

based on recent results of candidate gene association and

genome-wide association studies (GWAS). For example, the

minor genotype of a variant located within the Sp1 binding of

the COL1A1 gene was consistently shown to be associated with

fracture in a dominant manner, such that the TT genotype (6.3%

in the general population) was associated with a 4.21-fold

increased risk of hip fracture compared with GG and GT

genotypes.(25) Moreover, theminor genotype GG of the variant in

exon 15 of the LRP5 gene (11% in the general population) was

associated with a 1.67-fold increased risk of fracture compared

with other genotypes.(26,27) Recent GWAS results also suggested
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that virtually all statistically significant SNPs conferred a relative

risk of fracture of between 1.1 and 1.4.(19)

Data analysis

Our primary aim was to assess the relative contribution of genetic

profiling to the prognosis of fracture. To address that aim, we

considered three predictive models as follows: (1) Model 1

included only clinical risk factors that have been shown to be

associated with fracture risk. These risk factors included sex,

femoral neck BMD, history of prior fracture, falls during the past 12

months, and age. (2) Model 2 included only genetic profiling. The

genetic profiling was quantified by twoways as follows: In the first

approach, for each individual, each gene was coded as 1 (for

presence of the high-risk allele) or 0 (for absence of the high-risk

allele), and the summation of all 50 scores was termed the genetic

risk score. In this second approach, we included all 50 genes as 50

independent risk factors in the predictive model. (3) Model 3

included both clinical risk factors and genetic profiling.

The predictive accuracy of a model was assessed by the area

under the receiver operating characteristic curve (AUC),(28–31)

which is the probability that given two randomly drawn

individuals, the individual who will sustain a fracture first had

a lower probability of nonfracture. In recent years, it has been

realized that the AUC is too insensitive to change(32) and that it

may not be the most appropriate method for assessing the

contribution of genetic markers. Therefore, in order to assess the

incremental prognostic value attributable to genetic profiling, a

reclassification analysis(33) was performed. In this reclassification

analysis, the probability of fracture was estimated for each

individual by each model and then classified into three risk

groups: less than 10%, between 10% and 20%, and more than

20%. The proportion of individuals who would be reclassified

into the three risk groups for the model with genetic profiling

and the model without the genetic profiling was calculated.

Thus, if genetic profiling is useful for fracture prognosis, the

probability of fracture estimated by the model with genetic

factors would be increased for the fracture group and decreased

for the nonfracture group. We quantified this prognostic im-

provement by computing two indexes: the net reclassification

improvement (NRI) and the integrated discrimination improvement

(IDI). The NRI was computed as follows: NRI¼ Pr(up j fracture) –
Pr(down j fracture) – Pr(up j nonfracture)þ Pr(down j non-

fracture), where Pr denotes probability. The IDI was computed as

IDI¼ P1,fx – P1,nonfracture – P0,fractureþ P0,nonfracture, where P1,fx is the

average predicted probability of fracture in the fracture group

for the model with genetic factors, P1,nonfracture is the average

predicted probability of fracture in the nonfracture group for the

model with genetic factors, P0,fracture is the average predicted

probability of fracture in the fracture group for the model

without genetic factors, and P0,nonfracture is the average predicted

probability of fracture in the nonfracture group for the model

without genetic factors. The IDI also can be interpreted as the

proportion of variance explained by genetic factors. All analyses

were performed using the R language on the Windows platform

(Open Source, R Development Core Team, Vienna, Austria)(34)

with the Design and Hmisc packages (Frank E Harrell Jr et al.,

Vanderbilt University, Nashville, TN, USA).

Results

There were 858 men and 1358 women whose full data were

available for analysis. During the follow-up period (1989 and

2008), 17% (n¼ 149) of the men and 31% (n¼ 426) of the

women had sustained a fragility fracture. As in previous studies,

individuals with a fracture had, on average, lower BMD than

those without a fracture.(35–38) Moreover, individuals with a

fracture were older, more likely to have a preexisting fracture,

and more likely to have had at least one fall during the

12 months prior to the fracture event.

The distribution of simulated genetic risk scores had a median

genetic risk score of 13 (range 4 to 25; Fig. 1). Approximately 10%

of individuals had fewer than 10 risk genotypes; another 10%

had more than 16 risk genotypes. Compared with those with

fewer than 10 risk genotypes, those with 10 to 16 risk genotypes

had their odds of fracture increased by 5.47 [95% confidence

interval (CI) 3.03–9.90]. Those with more than 16 risk genotypes

had the highest risk of fracture [odds ratio (OR)¼ 43.6; 95% CI

22.8–83.2].

The AUC of the model with only genetic risk score was 0.78,

which was not significantly different from that of the model with

clinical risk factors alone (ie, sex, age, femoral neck BMD, prior

fracture, and fall). However, the model in which 50 individual

genes were analyzed had an AUC of 0.82, significantly higher

than either the model with a single genetic risk score or the

model with clinical risk factors. When the genetic risk score was

added to the clinical risk factors, the AUC was increased to 0.85

(p< .0001). When the individual 50 genes were added to the

model with clinical risk factors, the AUC was increased to 0.88,

which was the ‘‘best’’ model for predicting fracture risk (Table 1).

The effect of sequentially adding each gene into the predictive

model was assessed by the incremental cumulative AUC values.

For example, a model with three clinical risk factors (ie, age,

prior fracture, and fall) yielded an AUC of 0.732; add gene 1

(frequency¼ 0.6; RR¼ 1.10) increased the AUC to 0.733; add

gene 2 (frequency¼ 0.60; RR¼ 1.11) on top of gene 1 increased

the AUC to 0.734. The AUCwas increased to 0.80 when the model

had 25 genes. However, in the presence of BMD, the number of

genes required to increased the AUC to 0.80 was 20 (Fig. 2).

Reclassification analysis (Table 2) showed that compared with

the clinical risk factors model, the model with an additional

Fig. 1. Distribution of the number of simulated ‘‘high-risk’’ alleles in the

Dubbo population.
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genetic risk score reclassified nonfracture individuals into lower

risk groups by 45% but reclassified 12% into higher risk groups;

thus there was a gain of 33%. For the fracture group, the model

with genetic risk score reclassified upward 14% but downward

by 11%, a gain of 3%. In total, there was a net gain of

33þ 3¼ 36% (Supplemental Table S2). However, the model with

individual 50 genes and clinical risk factors yielded a net gain of

46% over and above the model with only clinical risk factors

(Supplemental Table S3).

The inclusion of either genetic risk score or 50 individual genes

increased the predicted probability of fracture in the fracture

group and decreased the predicted probability of nonfracture in

the nonfracture group. However, while the genetic risk score

explained approximately 14% of the fracture risk variance,

the individual 50 genes explained approximately 20% of the

fracture risk variance (Table 3).

Discussion

The assessment of fracture risk is currently moving toward an

absolute-risk approach, in which an individual’s risk of fracture is

estimated from the individual risk profile. At present, the risk

profile is largely based on clinical risk factors such as history of

prior fracture, history of a fall, bonemineral density, body weight,

and concomitant diseases.(6–8) Although these clinical risk factors

are known to be associated with fracture risk, their ability to

discriminate fracture from nonfracture cases is modest, with the

AUC value ranging from 0.70 to 0.80.(7,8) Therefore, there is room

for further improvement of fracture prognosis, and genetic

profiling is potentially an important contributor to the

enhancement of fracture risk assessment.

It is well established that the risk of fracture is partially

determined by genes, but it is unclear whether genetic risk

factors can improve the prognosis of fracture over and above of

that provided by clinical risk factors. In this study, we have shown

that the contribution of any single gene to the prognosis of

fracture is very small. Indeed, even for a gene conferring a

relative risk of 3, the AUC attributable to this gene is barely 0.51

(in the absence of clinical risk factors). Even with five genes, each

conferring a relative risk of between 2 and 3, the AUC is still 0.60,

which is not useful for predicting fracture. This finding suggests

that the contribution of any single gene to fracture prognosis,

no matter how large, the effect size likely is limited and would

not be useful, particularly in a clinical setting. However, the

integration of genetic profiling, in the form of either a genetic

risk score or individual genes, into the current prognostic models

could improve the predictive accuracy of fracture risk sig-

nificantly for an individual.

It is now clear that the risk of fracture is determined by many

genes, each with a small effect size. This is perhaps not surprising

given the number of complex phenotypes and the number of

regulatory proteins involved in calcium, collagen, bone met-

abolism, bone strength, and bone size. This analysis suggested

that a profile of up to 25 genes (each with a relative risk of 1.1 to

1.35 and gene frequency ranging from 0.25 to 0.60) in the

presence of clinical risk factors—with or without BMD—is

required to achieve an AUC of 0.80, indicative of clinical

usefulness. Until now, very few genes have been implicated in

Table 1. Area Under the Receiver Operating Characteristic Curve for 3 Models

Model

AUC

AUC Improvement over the model with CRF only

1. Sexþ ageþ BMDþprior fractureþ fall 0.77

2a. Genetic risk score (GRS) 0.78 0.01

2b: Gene1þGene2þGene3þ . . .þGene50 0.82 0.05

3a: Sexþ ageþ BMDþprior fractureþ fallþGRS 0.85 0.08

3b: Sexþ ageþ BMDþprior fractureþ fallþ 50 genes 0.88 0.11

Fig. 2. Cumulative AUC as a function of number of genes only (dotted

line), with genesþnon-BMD clinical risk factors (dashed line), and with

genesþ BMDþ clinical risk factors (solid line).

Table 2. Reclassification Analysis: The Effect of Adding Genetic

Profile into the Basic (Clinical Risk Factor) Model

Comparison

of model

Percent of reclassification compared

with model with clinical risk

factors only

NRI

No-fracture

group

Fracture

group

Down Up Down Up

Model 3a 0.45 0.12 0.11 0.14 0.36

Model 3b 0.52 0.11 0.11 0.16 0.46

NRI¼ net reclassification improvement.

Model 3a included sex, age, BMD, prior fracture, fall, and genetic risk

score.
Model 3b included sex, age, BMD, prior fracture, fall, and 50 genes.
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the determination of fracture risk. A recent meta-analysis of 150

SNPs found that only 5 SNPs from four genes were consistently

associated with fracture risk, with relative risk ranging from 1.1

to 1.4.(19) Thus, given the ongoing progress of finding new genes

for osteoporosis, the prospect of using genetic profiles in the

prognosis of fracture is a real possibility.

The aim of individualized prognosis is to provide an accurate

and reliable prognosis of fracture for an individual and to help

improve management of the individual’s predisposition to

fracture. Each individual is a unique case because there exists no

‘‘average individual’’ in the population. The uniqueness of an

individual can be defined in terms of the individual’s environ-

mental and genetic profile. Thus the knowledge of genetics,

in combination of clinical risk factors, can shift our current

risk-stratification (ie, ‘‘one-size-fits-all’’) approaches to a more

individualized evaluation and treatment of osteoporosis.

These findings should be interpreted within a number of

strengths and weaknesses. The strength of the study is that the

risk factors and fracture data were ascertained from a well-

characterized cohort with long duration of follow-up. The genes

were simulated to closely resemble the real-world situation, in

which multiple genes affect an individual’s fracture risk with a

small to modest effect size. As such, although the study was

partially simulated, it was really an empirical study. Themodel we

considered here was based on the assumption that the effects

of all 50 genes were totally independent. Although most past

findings have suggested that the effects of genes were

independent, there is no reason to think that genes exert their

effects on fracture risk independently. Considering the complex

phenotypes of osteoporosis, it would be expected that the

effect of a certain gene in part depends on other genes or

environments (ie, gene and gene-environment interactions).

However, identification of these interactions is quite a challenge

because of current linear statistical genetic methods used for

analyzing and detecting gene-phenotype associations in human

populations are not sensitive enough to detect nonlinear inter-

acting effects owing to the combinatorial complexity of gene-

gene and gene-environment interactions.

The utility of genes as a prognostic tool for predicting

common chronic diseases has been challenged.(41) Empirically, it

has been shown that the incorporation of genes did not result

in an appreciable increase in the accuracy of the prognosis

of type 2 diabetes(42) and cardiovascular diseases,(39,40) which

suggests that common genetic variants have a minimal effect on

the prognosis of these diseases. However, the mentioned work

assessed the incremental prognostic value based on the AUC

rather than the reclassification analysis as in our work. However,

AUC is insensitive to the addition of new and statistically

significant predictors, and the reclassification analysis provides a

better quantification of prognostic improvement.

In summary, we have demonstrated in this study that genetic

profiling could improve the prognosis of fracture risk signifi-

cantly and help to identify high-risk individuals for appropriate

risk management or intervention.
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