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The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demon-
strated that exogenous expression of Rev-erbBAE in skeletal muscle cells increased Srebp-1c mRNA
expression. We validated these in vitro observations by injection of an expression vector driving Rev-
erbBAE expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Par-
adoxically, Rev-erbp siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indi-
cated that Rev-erbp expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that
Rev-erbp was recruited to the Srebp-1c promoter. Moreover, Rev-erbp trans-activated the Srebp-1c pro-
moter, in contrast, Rev-erbp efficiently repressed the Rev-erba promoter, a previously characterized tar-
get gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the
Srebp-1c promoter by Rev-erbp; and (ii) increased Rev-erbp and Srebp-1c mRNA expression. These data
suggest that Rev-erbp has the potential to activate gene expression, and is a positive regulator of
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Introduction

Rev-erb beta (Rev-erbf/RVR, NR1D2), is a member of the nucle-
ar receptor superfamily [1-3]. Recent studies show that the Rev-
erb subfamily modulates genes involved in lipid metabolism, circa-
dian rhythm and inflammation [4]. Rev-erbp is a transcriptional
repressor and known target genes for this receptor include, Rev-
erba, apoClll, Afp, and N-Myc [5-9]. Until recently, this receptor
has been coined as an “orphan”. However, recent reports show that
“heme” binds to this receptor and can function as a physiological
ligand [10,11].

Skeletal muscle, a major mass peripheral tissue, initially identi-
fied to be a locomotive organ, has also been shown to have a prom-
inent role in various aspects of lipid metabolism [12]. Many
nuclear receptors are expressed in skeletal muscle and play impor-
tant roles in maintaining lipid homeostasis. Abnormal nuclear
receptor signaling in skeletal muscle leads to many diseases [14].
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In vitro studies performed in our laboratory show that Rev-erbfAE
modulates genes involved in lipid homeostasis and inflammation
such as Srebp-1c, Fabp4, II-6, and Myostatin [13,15].

Srebp-1c, a member of sterol-regulatory element (SRE)-binding
proteins (SREBPs), belongs to the basic helix-loop-helix leucine
zipper family of transcription factors [16-21]. Recently, members
of the nuclear receptor family have been identified to regulate
Srebp-1c gene expression in muscle and non-muscle tissues [22-
28].

We hypothesized that Rev-erbp regulated Srebp-1c expression
in muscle. We verified this hypothesis through several in vitro
and in vivo approaches. We noted that Rev-erbf is a direct regula-
tor of Srebp-1c mRNA expression. We also identified that Rev-erbp
operated as a transcriptional activator. In summary, our studies
suggest that Rev-erbf is a novel regulator of Srebp-1c gene expres-
sion in skeletal muscle and propose a role for this receptor in lipo-
genic pathways.

Materials and methods

Cell culture, RNA extraction and cDNA synthesis, quantitative
real-time PCR and luciferase assays have been described previously
[15,26].

RNAi. Two 21-mer siRNA duplexes (targeting N-terminus and
hinge regions of Rev-erbp) specific to the annotated mouse cDNA
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sequence of Rev-erbf (NM_011584) was generated with the siRNA
target finder from Ambion. The target sequences, Rev-erbf1-5'-
GAACGCTGATATCTCTAGC-3/, and Rev-erbp2-5'-AGGAGGA
AGTGATTGGTAT-3' were cloned into the pSilencer 2.1 neomycin
vector.

Plasmid constructs. Mouse Srebp-1c promoter construct has been
described previously [29]. Tk-Luc-Srebp-1c (—525/—401) construct
spanning RERE2 site was PCR amplified from mouse tail DNA with
Pfu Turbo polymerase (Stratagene) using the following primers—
Forward: CCCCCTCCTTGAAACAAGTGT and Reverse: GCAGCAAG
ATTTGCCTACAGTCT.

Chromatin immunoprecipitation (ChIP) assay: as described previ-
ously [30]. Samples were analyzed using quantitative RT-PCR using
the following primers: RERE1—Forward: CTCAGATGTC
AGAAGGAGCAGAGTAG and Reverse: GTTCTGTCCAGCCTGCAAGTG;
RERE2—Forward: CCCCCTCCTTGAAACAAGTGT and Rev: GCAGCAA
GATTTGCCTACAGTCT; GAPDH—Forward: GCTCACTGGCATGGCC
TTCCG and Reverse: GTAGGCCATGAGGTCCACCAC; +2 kb region—
Forward: GCAGGAATTCAGCCCAGAAA and Reverse: AGTGAGCCC
CATTGCACCTA. All of the amplification data were first normalized
to input (non-immunoprecipitated chromatin) and expressed as
fold enrichment over those obtained with immunoprecipitations
using a non-immune serum.

In vivo electrotransfer into mice. DNA was extracted, purified
using endotoxin-free maxi-prep kits and re-suspended in sterile
0.9% saline. Anaesthesia was induced in mice using 5% halothane
in oxygen and maintained with 1-2% halothane in oxygen with
administration of 5 mg/kg ketoprofen to provide post-operative
analgesia. The hind limbs of mice were prepared with a chlorhex-
idine-ethanol solution, and one tibialis cranialis muscle was in-
jected in oblique fashion transcutaneously along their length
with 30 pl of saline containing 0.5 mg/ml of each vector (pEGFP
and pSG5-Rev-erbBAE using a 29-gauge needle. The injection
was immediately followed by the application of a pair of caliper
electrodes across the injected leg connected to an ECM-830 elec-
troporator device (BTX, Holliston, MA). Eight 20-ms pulses of
200 V/cm at a frequency of 1 Hz were administered as described
previously [31]. The other tibialis cranialis muscle was injected
with the appropriate control vectors (pEGFP and pSG5) and elec-
troporated. One week after electrotransfer mice were killed, and
the tibialis cranialis muscles were collected. All experimental pro-
cedures were approved by the Garvan Institute Animal Experimen-
tation Ethics Committee and were in accordance with the NHMRC
of Australia Guidelines on Animal Experimentation.

>

Fig. 1. Srebp-1c mRNA expression is regulated in mouse tibialis muscles transiently
expressing Rev-erbBAE transcript; and skeletal muscle cells expressing Rev-erbp
siRNAs. Mouse tibialis cranialis muscles were injected with a pSG5-Rev-erbBAE
expression vector or pSG5 control vector. Muscles were collected 1 week later and
processed for RNA, and the level of (A) exogenous Rev-erbpAE, (B) endogenous Rev-
erbp, and (C) Srebp-1c, mRNA expression was determined by quantitative RT-PCR.
Values obtained from five animals were pooled, normalized, and expressed as the
number of target transcripts per GAPDH transcript. Data represent mean + SEM
(n=5). Statistical significance was measured using paired two-tailed Student’s t-
test where P<0.05 (x); P<0.0001 (**x). (D) C2C12 cells were transfected with
C2C12-siGFP, C2C12-siRev-erbp1, C2C12-siRev-erbp2, and C2C12-siRev-erbpMix
(with both siRev-erbp1 and siRev-erbf2). After 48-72 h post-transfection, RNA was
isolated for quantitative RT-PCR analysis of Rev-erbf expression (relative to GAPDH
control). Data represent mean + SEM (n = 3). Statistical significance was measured
using unpaired two-tailed Student’s t-test where P < 0.0001 (xx*x). (E) C2C12 cells
were individually transfected with C2C12-siGFP, C2C12-siRev-erbp1, C2C12-siRev-
erbp2, and C2C12-siRev-erbpMix (with both siRev-erbpl and siRev-erbp2). After
48-72 h post-transfection, RNA was isolated for quantitative RT-PCR analysis of
Srebp-1c expression (relative to GAPDH control). Data represent mean + SEM (n = 3).
Statistical significance was measured using unpaired two-tailed Student’s t-test
where P<0.01 (xx).

Results

Electroporation of Rev-erbBAE into mouse hind limbs activates Srebp-
1c mRNA expression

Studies from our laboratory in the C2C12 in vitro skeletal mus-
cle cell culture system demonstrated that constitutive ectopic
expression of Rev-erbBAE induces expression of the mRNA encod-
ing Srebp-1c [15]. We confirmed whether Rev-erbf expression
modulated Srebp-1c mRNA expression in vivo. We injected and

A Exogenous-Rev-erbfAE

Normalised Expression
x1 0")mR_i‘4AIGAPDH
a o
=3 o
o o o
: |
*
*

Left Right
mouse transfected muscle
B . Endogenous Rev-erbf
STs
§ Q7
2de
Ggs
SE4
LAk
£z
224
Left Right
mouse transfected muscle
C SREBP1c
*
o 20 li
25
8 3 1.5
o
85,
< Z 1.0
2E
£% 05
5%
z
0.
Left Right
mouse transfected muscle
D Rev-erbf
*kk
T 60
$85_8
L 'n G < 40
829
5E-EY
4
£
0
C2C12-siGFP
C2C12-siRev-erbg1 - + - -
C2C12-siRev-erbf2 - - + -
C2C12-siRev-erbp1+2 - - - +
E SREBP1c
*%
T 60
E-1- =]
@90 o
Ln < 40
HiL
s g
=z
E 0
C2C12-siGFP
C2C12-siRev-erbp1 - + - -
C2C12-siRev-erbf2 - - + -
C2C12-siRev-erbp1+2 - - - +



656

S.N. Ramakrishnan et al. / Biochemical and Biophysical Research Communications 388 (2009) 654-659

A 1342 -1158 525 401 -323  -197 —
— <+ — <« - <«
- — L

REREA1 RERE2 LXR-Es +1bp

Rev-erbB NR region

REREla (-1325/-1308):agcagagtaGGGTCAaca

RERE1b (-1257/-1212):GGGTCAgggctcttccctgccttcagttgggtgAGGTCAgaggttt

RERE2 (-487/-458):

ctgctagctagatgaccctgcaccaccaac

gacgatcgatctACTGGGacgtggtggttg

B SREBP1c
0.64
0.54 §
S04
- §
C 0.34 {
=
R 0.2
H
0.14 i .
g H Y i
0.0- N 3 A0 o H
Q080 2022020
<2< 93< i< o3I< o3
R - N - - e
@ (] L] Q Q
v i > v i
> > [ > >
[ [ [v4 [ o
o o "4 x

RERE1 RERE2 LXREs GAPDH

+
]
Py
o

* %%k
4.0x10° -

3.0x10°-

2.0x10°-

1.0x10°

Relative Light Units ¢

TKLuc + +

TKLuc-SREBP1c - . , .
(-525/-401)

pSG5 + - +
pSG5-Rev-erbf - + - +

Fig. 2. Rev-erbp is recruited to the Srebp-1c promoter. (A) Diagrammatic representation of two predicted Rev-erbf sites on SREBP-1c promoter. RERE2 site is on the reverse
strand of Srebp-1c promoter. (B) The recruitment of Rev-erbp onto the Srebp-1c promoter in C2C12 skeletal muscle cells by ChIP assay (data represent mean of one
representative assay, from three independent experiments). (C) Transfection of pTK-LUC-SREBP-1c (—525/—401) reporter with pSG5-Rev-erbp or pSG5 vector in COS-1 cells.
Data represent mean = SEM (n = 3). Statistical significance was measured using unpaired two-tailed Student’s t-test where P < 0.0001 ().

electroporated the right hind limb of mouse tibialis muscle with
the pSG5-Rev-erbBAE expression vector. The left hind limb was in-
jected with pSG5 control vector and electroporated using same
procedure. Mice were sacrificed a week after electroporation and
muscles were collected for RNA preparation and subsequently pro-
cessed for RT-PCR analysis. Over-expression of pSG5-Rev-erbBAE
in these muscles produced abundant ectopic Rev-erbBAE tran-
script compared to control vector (Fig. 1A). However, the endoge-
nous Rev-erbp expression remained unchanged (Fig. 1B).
Interestingly, in agreement with our previous results from the
in vitro cell culture model, we observed that Rev-erbBAE expres-
sion induced Srebp-1c mRNA expression in vivo (Fig. 1C).

Rev-erbp siRNA expression suppresses Srebp-1c mRNA expression

We hypothesized that Rev-erbp regulated Srebp-1c gene expres-
sion. Secondly, that Rev-erbp siRNAs would induce Srebp-Ic
expression, based on the observation that Rev-erbf represses tran-
scription, and that the E-region/LBD is required for repression. To
test this hypothesis, we designed two siRNAs targeting N-terminus
and hinge regions of Rev-erbp, and cloned these into the pSilencer
2.1 plasmid vector. Expression of siRev-erbp1, siRev-erbp2 and a
mixture of both siRNAs (siRev-erbfMix) significantly repressed
endogenous Rev-erbp mRNA expression 30-50%, relative to the
GFP siRNA transfected control cells (Fig. 1D). Paradoxically, the
expression of the mRNA encoding Srebp-1c was significantly de-
creased (Fig. 1E). These experiments suggested that Rev-erbp
expression was necessary for Srebp-1c expression.

Rev-erbp is recruited to the Srebp-1c promoter

We subsequently examined whether Rev-erbf is recruited to
Srebp-1c promoter in skeletal muscle cells. Putative Rev-erbp bind-
ing sites were identified using programs MatInspector and Consite.
We identified two potential Rev-erbp binding sites in the promoter
[hereafter denoted as Rev-erbp response elements (RERE1 and 2)
located between nt positions —1257/-1212 and —487/-458,
respectively]. Through ChIP analysis, we identified selective
recruitment of Rev-erbf to the RERE?2 site (Fig. 2A and B) compared
to IgG, GAPDH, and the no antibody controls. Interestingly, Rev-
erbp is not recruited to the RERE1 site which has been reported
to interact with PPARa and RORa [24,27]. We cloned a single copy
of the —525/—401 region spanning RERE2 into the basal TK-Luc
promoter to study whether this fragment responds to Rev-erbp.
Interestingly, this region is activated by Rev-erbp (Fig. 2C). These
results identified a novel RERE in Srebp-1c promoter and demon-
strated that Rev-erbp is specifically recruited to this element.

Rev-erbp activates the Srebp-1c and represses Rev-erba. promoter

The in vivo and in vitro expression experiments coupled to the
ChIP experiments strongly suggested that Rev-erbp expression reg-
ulates Srebp-1c expression, and the mechanism involves recruit-
ment of Rev-erbf to the Srebp-1c promoter. We subsequently
examined whether Rev-erbf modulated the Srebp-1c promoter.
Initial experiments performed with Srebp-1c promoter showed
that Rev-erbf trans-activated this promoter (data not shown). This
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Fig. 3. Differential regulation of the Rev-erbo and Srebp-1c promoter by Rev-erbf in skeletal muscle cells. (A) Each well of a 24-well plate of C2C12 cells (~50% confluence)
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Rev-erb beta. Data represent mean + SEM (n = 3). Statistical significance was measured using paired two-tailed Student’s t-test where P < 0.05 (x).
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observation appeared paradoxical, since studies performed over
the past-decade showed that Rev-erbp is a transcriptional silencer
[2,5,9]. However, it is consistent with ectopic expression of the
Rev-erb siRNA and expression vectors, in vitro and in vivo. More-
over, the literature has suggested that some nuclear receptors
can perform dual functions as transcriptional activators and
repressors [32]. Therefore, we simultaneously examined the ability
of Rev-erbp to modulate the activity of the hRev-erboat promoter
(previously characterized to be repressed by Rev-erbf [5]) and
the Srebp-1c promoter.

Transfection experiments performed in skeletal muscle cells
showed that both Rev-erbp and Rev-erbBAE trans-activate Srebp-
1c promoter (Fig. 3A), and not the vector controls. In contrast, (as
expected) Rev-erbp (but not Rev-erbBAE) significantly repressed
the hRev-erba promoter. These observations highlight that Rev-
erbp can specifically and selectively modulate gene expression in
a gene specific manner.

Hemin treatment induces Srebp-1c promoter activity and mRNA
expression in skeletal muscle cells

Hemin, a derivative of heme binds to the E-region/ligand bind-
ing domain of Rev-erbp [10,11]. However, these studies did not re-
port whether heme binding to Rev-erbf modulates Rev-erbp target
gene expression. We tested the hypothesis of whether hemin treat-
ment modulates Srebp-1c promoter activity and mRNA expression
in skeletal muscle cells.

Transfection experiments performed in skeletal muscle cells
showed that hemin treatment increases the activity of the Srebp-
1c promoter in the presence and absence of Rev-erb (Fig. 3B), com-
pared to the vector controls. Moreover, skeletal muscle cells were
differentiated for three days and treated with hemin for 24 h.
Quantitative RT-PCR analysis showed that hemin treatment in-
creased endogenous Srebp-1c (Fig. 3C) and Rev-erbf mRNA
(Fig. 3D) expression in skeletal myotubes. These results show that
heme, a Rev-erbp agonist, regulates Srebp-1c mRNA expression, in
a subtle but significant manner.

Discussion

Previously, we identified that the nuclear receptor Rev-erbp
modulated Srebp-1c mRNA expression in skeletal muscle cells
[15]. We have followed up this observation, and are reporting data
that suggests Rev-erbf is a direct regulator of Srebp-1c gene
expression in murine skeletal muscle cells. In vivo analysis showed
that ectopic Rev-erbBAE expression induces Srebp-1c mRNA
expression in mice, in concordance with the previous and current
in vitro studies. Our study suggests that Rev-erbp is a key modula-
tor of Srebp-1c.

Srebp-1c has been shown to be a regulator of genes involved in
fatty acid biosynthesis [18,19]. Srebp-1c was initially shown to play
major role in adipocyte metabolism [33-36], however in recent
years this transcription factor has been reported to play a role in
skeletal muscle metabolism. In this context, nuclear receptors have
been identified as important modulators Srebp-1c expression in
skeletal muscle. For example, agonists for the nuclear receptor Li-
ver X Receptor (LXR) increase Srebp-1c mRNA expression in skele-
tal muscle cells/tissue [29]. Studies from our laboratory show that
expression of the COUP-TFs in skeletal muscle cells is necessary for
LXR-mediated Srebp-1c activation [26]. Moreover, staggerer mice,
which carry a natural mutation for orphan receptor RORa dis-
played decreased Srebp-1c gene expression and serum triglycerides
[27].

Several orphan NRs interact with DNA efficiently as monomers
to an extended hexameric AGGTCA half site flanked by a 5’ A/T rich

sequence (R/TsAGGTCA, R = AorG) [37]. We observed that the re-
gion between nt positions —525/—401 in the SREBP-1c promoter
mediated trans-activation by Rev-erbp, and selectively recruited
Rev-erbp in the ChIP assay. This region has the hexameric half site
within the extended region between nt positions —487/—458.
Whether, Rev-erbp is binding to the monomeric well conserved
AGGTCA half site, or whether there is homodimeric binding to
weak Rev-DR2 motif in this Rev-erbf responsive region is not clear
at present (Fig. 2A and B). Mutation of the two proximal LXR re-
sponse elements between nt positions —323 and —197 do not com-
promise Rev-erbf mediated trans-activation of the SREBP-1c
promoter (data not shown). Finally, the basal SREBP-1c promoter
supported weak Rev-erbp mediated trans-activation, however,
ChIP analysis did not identify any selective recruitment of Rev-erbp
to this region (data not shown).

In summary, we have identified a novel function of Rev-erbp,
being a transcriptional activator in the presence and absence of
hemin. Studies have shown that apart from the C-terminal Li-
gand Binding Domain (LBD), nuclear receptors can also modulate
gene expression using their N-terminus Activation Function-1
(AF-1) domain [38,39]. Interestingly, the Rev-erbp AF-1 domain
has been shown to be functional [40]. Raghuram and colleagues
have recently shown that heme associates with the LBD of Rev-
erbat and B [10,11] and demonstrated that the LBD of these NRs
form several different confirmations structures in response to
heme, NO or CO and redox state. Interestingly, our data shows
that Rev-erbf activates the Srebp-1c promoter in skeletal muscle
cells. These observations raise the interesting question whether
Rev-erb ligands function in tissue specific manner, and strongly
indicate that Rev-erbp can directly induce and silence gene
expression.
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