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Membrane proteins represent over 50% of known drug targets. Accordingly, several widely used assays
in the high content analysis area rely on quantitative measures of the translocation of proteins between
intracellular organelles and the cell surface. In order to increase the sensitivity of these assays, one needs
to measure the signal specifically along the membrane, requiring a precise segmentation of this compart-
ment. Manual tracing of membrane boundary is very time-consuming and confronts us with issues of
objectivity and reproducibility. In this paper, we present an approach based on a circular multiple paths
technique on transformed images that enables us to segment the membrane compartment accurately
and rapidly. We have presented three approaches for image transformation. The circular property of the
multiple paths ensures that we are obtaining closed contours for the membrane boundary. The position
of the multiple paths provides the edges of the membrane boundary. The effectiveness of our algorithm
is illustrated using cells expressing epitope-tagged membrane proteins.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The outer lipid bilayer of a cell mediates the exchange of polypep-
tides, lipids and other molecules and serves as an interface for
inter-cell communication. Regulation of these exchanges through
modulation of the concentration, activities, and spatial distribution
of proteins and lipids within this cell compartment is, therefore,
critical to normal cell function. Clusters of high-concentrated mem-
brane proteins underlie important cellular processes, including
exocytosis, endocytosis, mitosis, and cell migration. Membrane pro-
teins may even be found in a crystalline state within the membrane.
A majority of drugs available today exert their effect by targeting
membrane proteins, mainly by antagonising the signalling action
of soluble hormone-like ligands. Upon fixation and staining, mem-
brane undergoes massive damages that compromise the continuity
and uniformity of the membrane compartment. As a result, tracing
the membrane of immunostained cells in confocal images is far
from trivial.

Young and Gray used semi-automatic boundary detection tech-
niques for identification of cells in differential interference contrast
(DIC) microscope images mainly based on edge information [1]. Wu
et al. introduced an iterative thresholding algorithm for the seg-
mentation of cells from noisy images [2]. Ortiz de Solorzano et al.
carried out nucleus and cell segmentation by identifying seeds and
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expanding the boundaries of the seeds until they reach the limits
of the nuclei or cells [3]. This is similar to the snakes or active con-
tour type of algorithms [4,5]. Alexopoulos et al. developed a method
for quantifying cell size from DIC images by incorporating an edge
detection algorithm and dynamic programming for edge linking [6].
Liang et al. used a dynamic programming procedure for boundary
detection in ultrasonic artery images [7]. Other approaches related
to membrane boundary extraction include those in Refs. [8–10]. The
type of images used in these papers varies. The majority of the im-
ages contain cells with brighter intensity within the cell boundary.
A gradient operation on this type of images should generate linear
structure for the boundary. Some papers are directly using images
showing brighter linear membrane structures. The type of images
that we will be working on is of the latter type.

In this paper, we propose an approach for membrane boundary
extraction using a circular multiple paths (CMP) technique. The use
of the CMP technique in the neighbourhood of a cell boundary en-
sures that all the information within an extended region is taken
into account. CMP enable us to obtain closed contours along the
membrane boundary. Themultiple paths are obtained through global
optimisation via dynamic programming. Themultiple paths also pro-
vides the edges of the membrane boundary which can be used to
make measurements within the boundary region. We also provide
a mechanism for the use of control points if necessary during the
process of membrane boundary extraction.

The paper is organised as follows. We first describe our approach
for membrane boundary extraction which includes steps such as cell
centre selection, polar image transformation, and CMP extraction.

http://www.sciencedirect.com/science/journal/pr
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We then outline the individual steps of our algorithm. We demon-
strate the capabilities of our membrane boundary extraction algo-
rithm on a range of real images in the experimental result section,
and then give conclusion remarks.

2. Membrane boundary extraction using CMP

In this section, we describe our algorithm for membrane bound-
ary extraction using a CMP technique. It ensures that the boundary
obtained is closed and has the maximal integrated image or gradient
intensity along its paths.

2.1. Obtaining approximate cell location

We begin by obtaining an approximate position of the centre of
the cell. This can be achieved interactively or through an automated
process. With the interactive approach, a user can click a point close
to the centre of the cell on the image. In an automated approach, the
approximate centre of the cell may be obtained by the automated
segmentation of the nucleus channel if available. The approximate
centre position can actually be anywhere within a certain distance
of the cell centre. This approximate position of the cell centre will
be used next for transforming the input image or a local region of
an image into polar coordinates to obtain the membrane boundary.
The “+” sign in Fig. 1(a) indicates an approximate position of the cell
centre. For complicated cell boundaries, two point positions within
the membrane boundary may be necessary. This situation will be
further discussed in the next subsection.

Fig. 1. Polar transformed image for a local region of an input image. (a) Input
image with a cross indicating the approximate centre of cell; (b) polar transformed
image.
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Fig. 2. Different approaches for image transformation. (a) Circular disk region or
donut shaped region; (b) ellipse shaped region; (c) two half donuts and two rect-
angular regions.

2.2. Image transformation for boundary extraction

The neighbourhood around the approximate cell centre, a circular
region as shown in Fig. 2(a), is transformed into polar coordinates
for membrane boundary extraction. In the transformed image, as
illustrated in Fig. 1(b), the top row corresponds to the centre point.
The bottom row corresponds to the outer perimeter of the circular
region with radius Rmax. If one is able to limit the range of the radius
of the membrane boundary from the cell centre, the circular region
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can be restricted to a “donut” region, as bounded by the two circles
with radii Rmin and Rmax. One set of Rmin and Rmax values can be
selected for all the cells in the image. In this case, one needs to make
sure that Rmin is smaller than the minimum cell radius within the
image and Rmax is larger than the maximum cell radius. One can
also set different Rmin and Rmax values for each individual cell. The
membrane boundary in the transformed image appears as a bright
linear object going from left to right of the image. The left and the
right sides of the transformed image are neighbouring columns. That
is, they are from neighbouring radial segments from the approximate
cell centre of the input image. Depending on the position of this cell
centre in the original image, portions of the polar transformed image
may contain no values if the position of these points fall outside the
original image. We can assign special values on these points in the
transformed image.

For elongated shapes of the membrane boundary, we can use
the shape of a “squeezed” donut, as illustrated in Fig. 2(b), bounded
by the two curves E1 and E2, the inside and outside boundaries.
Given two points O1 and O2, which can be treated as the foci of an
ellipse, together with the length of its semi-major axis a, the shape
of the ellipse E can be obtained. The half distance between O1 and
O2 defines the linear eccentricity c of the ellipse E. From c and a,
the semi-minor axis b can be obtained as b =

√
a2 − c2 [11,12]. The

angle of the ellipse from the horizontal x-axis, �, can be calculated
from the positions of O1 and O2. Based on the lengths of a, b, and
the angle � of the ellipse, the parametric function of the ellipse E can
be written as
{
x(t) = x0 + a cos t cos� − b sin t sin�
y(t) = y0 + b sin t cos� + a cos t sin�

(1)

where (x0, y0) is the centre position of the ellipse, i.e. the midpoint
O of O1 and O2. t is the curve parameter, −�� t <�.

When carrying out the polar transformation, the radial segment
CD still passes through the centre point O. This is similar to the case
in Fig. 2(a) but with a region of a squeezed donut shape. A multi-
ple value situation may still occur. As illustrated in Fig. 2(b), with
an approximate cell centre position at O, a radial line segment OC
intersects the membrane boundary M three times. This translates to
three positions for boundary M to appear on one particular column
in the transformed image. The existence of multiple positions of the
membrane boundary on one column makes it difficult for the dy-
namic programming type of procedure to find the correct membrane
boundary.

To reduce the possibility of multiple values occurring, one may
use the tangent information at one particular point on the ellipse
E. A line segment AB perpendicular to the ellipse and with the seg-
ment centre on the ellipse E sweeps through the ellipse and make a
squeezed donut shape as shown in Fig. 2(b). This donut shape trans-
forms into a rectangular image in the polar space. A line extending
the segment AB does not always pass through the ellipse centre O.
The unit normal vector to the tangent, i.e. along the direction of seg-
ment AB, is
⎧⎪⎪⎨
⎪⎪⎩
xN(t) = −b cos t cos� + a sin t sin�√

a2 sin2 t + b2 cos2 t

yN(t) = −a sin t cos� − b cos t sin�√
a2 sin2 t + b2 cos2 t

(2)

In complex situations as mentioned above, we can use another ap-
proach to transform the input image with two centre points within
the cell to eliminate the multiple values issue as illustrated in
Fig. 2(c). With two centres O1 and O2 within the cell boundary,
we can obtain two half circles or half donuts (regions R1 and R3)
and two rectangular regions (regions R2 and R4), as in Fig. 2(c).
The shape of the region formed by R1, R2, R3 and R4 looks like a
sport oval track. One of the half donut is obtained by swiping line

segment EA clockwise to FB; the other half donut is obtained by
swiping line segment GC clockwise to HD. The length of the line
segment is the difference between the maximum radius Rmax and
the minimum radius Rmin where Rmin can be 0. The transformed
images for these two half donuts R1 and R3 in the polar coordinate
form two rectangles R′

1 and R′
3. The two rectangles for R2 and R4

are bounded by FBCG and HDAE, respectively. The four rectangles,
R′
1, R2, R

′
3 and R4, are stacked together in this order to form a single

rectangular image that is used for membrane boundary extraction.
The size of the transformed image depends on the angular reso-

lution and the radius that we specify in the polar coordinate. Fig. 1
shows an example of the transformed image in a cell region of the
input image. Fig. 1(a) is the input image with the small plus sign in-
dicating the approximate position for the cell centre; and Fig. 1(b)
is the local region around the cell in polar coordinates.

2.3. Obtaining circular paths

We obtain a single circular shortest path (CSP) or CMP from the
polar transformed image for extracting themembrane boundary. The
circular property of the paths ensures that the membrane boundary
obtained is a closed contour. In the next two subsections we describe
algorithms for obtaining a single shortest path and multiple paths
from left to right of a rectangle image. We then describe approaches
for obtaining circular paths.

2.3.1. Obtaining a single path
In some cases, onemay just need to extract a single closed contour

along the centre of the membrane boundary. In this case, a single
CSP can be extracted. An easy approach to extract the membrane
boundary is via the use of the dynamic programming technique to
obtain a CSP on the transformed image. This path should go through
the centre line of the membrane boundary.

The pseudocode for obtaining the shortest path from left to right
in the transformed image using dynamic programming is given in
the following Algorithm.

Algorithm. Shortest path via dynamic programming().
initialising cost in the first column:
for each j ∈ C1 do⌊
d1j := c1j
q1j := nil

obtaining accumulated cost (loop over columns):
for h := 2 to v do⎢⎢⎢⎣ foreach j ∈ Chdo⌊

dhj := chj + mini∈{|i−j|�1}{dh−1,i}
qhj := argmini∈{|i−j|�1}{dh−1,i}

picking up the minimum value in the last column and backtracking
for h := v to 1 do⌊
backtrack with qhj to find the path

In this pseudocode, dhj is the accumulated cost for the j th point
for the h th column; qhj holds the backtracking information for dhj;
v is the number of columns; Ch is the set of pixels in column h; i is
the pixel location on the previous column; j is the pixel location on
the current, h th, column; and chj is the connection cost from i to
j, and takes the intensity value at position (h, j) in the transformed
image. The process of obtaining the accumulated cost involves the
collection of the current best cost at a point and its backtracking in-
formation. Note that the dynamic programming approach for short-
est path extraction takes advantage of the regular structure of the
transformed image, i.e. a rectangular image. It starts with all the
points on the left boundary of the transformed image; then loops
through all the other columns from left to right and finishes at the
right boundary. A minimum cost is selected in one of the positions
in the right column, and then backtracking is carried out to find the
shortest path. The dynamic programing approach is different from
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Fig. 3. Membrane boundary extraction. (a) Input image, same as Fig. 1(a), but without showing the approximate centre point; (b) membrane boundary (inside and outside)
extracted and overlaid to the input image; (c) one dimensional gradient along the vertical direction in the transformed image showing the bright and dark sides of the
membrane; (d) membrane boundary overlaid on the patched image. Notice the image patching at the end of (c) to become (d).

the ordinary shortest path finding in a graph structure where one
needs to provide a source and a sink nodes.

2.3.2. Obtaining multiple paths
We can obtain the membrane boundary by detecting the inside

and outside edges of the boundary. The inside and outside edges
together form a thin band along the boundary with various thickness
across it. The detection of two paths along these edges can be carried
out using themultiple paths extractionmethod based on constrained
expanded trellis (CET) as described in Ref. [13]. The gradients across
the membrane boundary should have opposite signs on the inside
and outside boundary.We can use the sign function when calculating
the cost of paths.

The cost of each single path can be written as

C(P) =
v∑

h=1

c0(h,ph) +
v−1∑
h=1

c1(h,ph,ph+1) (3)

where c0 takes the cost value from ch,j given in Section 2.3.1. ph
is the path position on column h. For multiple paths extraction, we
use gradient information of the transformed image as input. c1 is a
first order cost function relating the shape of the path at the current
location. The cost of the multipath �P is the sum of the costs of the K
component paths:

C(�P) =
K∑

k=1

C(Pk)

From this we may derive the cost functions for the multiple paths �P
from the sums of the cost functions of each individual path k:

C(�P) =
K∑

k=1

v∑
h=1

c0(h, p
k
h) +

K∑
k=1

v−1∑
h=1

c1(h,p
k
h, p

k
h+1) (4)

where pkh is the position of the k th path on column h. We use
the CET method for extracting multiple paths, simultaneously in the
transformed image. In the current implementation,

c1(h,p
k
h, p

k
h+1) =

{
0 if |pkh − pkh+1|�1
∞ otherwise

2.3.3. Ensuring closed contour
Sun and Pallottino developed several algorithms for a single CSP

extraction on regular grids or images [14]. The algorithms use an ef-
ficient dynamic programming approach and ensure that the shortest
path obtained is circular. These algorithms are the Multiple Search
Algorithm (MSA), Image Patching Algorithm (IPA), Multiple Back-
tracking Algorithm (MBTA), a combination algorithm of IPA and
MBTA, and an approximate algorithm. We will use the IPA algorithm
here for membrane boundary extraction because it is conceptually
easy to understand and is very fast. The basic idea behind IPA is to
carry out image patching, a step which ensures path closure, and
use a dynamic programming algorithm to find a path in the patched
image.

The patching for the IPA algorithm is carried out in the horizontal
direction on the left and the right sides of the transformed image.
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The values of the patched regions come from the transformed image
itself. A shortest path is obtained from this patched image, and a CSP
may be extracted from the patched image. For detailed description
of the IPA algorithm please see Ref. [14]. The algorithm given in
Ref. [14] is for obtaining a single CSP in an image. We will use the
same IPA algorithm for obtaining CMP simultaneously.

The steps of the IPA algorithm for CSP and CMP extraction in the
transformed image are:

(1) Patch the transformed image on the left and the right sides with
portions of the transformed image itself to obtain a patched
image.

(2) Perform ordinary shortest path extraction using dynamic pro-
gramming or multiple paths extraction on the patched image.

(3) Extract the shortest paths which lies inside the original trans-
formed image.

2.4. Use of control points

Due to noise and the presence of other cells nearby, the extracted
membrane boundary may not be optimal. Part of the boundary may
shift to the boundary of other cells due to the fact that the strength
of the boundary of the other cells nearby is much stronger than the
cell of interest. In this case, we can add one or more control points
close to the membrane boundary of interest to enforce the extracted
boundary to be close to these control points. We carry out this by
assigning special (e.g. large negative) values for some columns of
the transformed image except for the pixels that are close to the
control points. The use of control points is only necessary in difficult
situations.

2.5. Membrane measurements

The measurements along the membrane boundary include to-
tal area, integrated intensity, average intensity, maximum intensity,
standard deviation of intensity, and length of boundary.

For a method using a single CSP, only one path along the centre
line of the membrane boundary is obtained. To make measurements
along the boundary, a fixed width across the boundary can be used.
The results of CMP contain multiple paths along the edges of the
membrane boundary, as shown in Fig. 3(b). One of the paths is along
the inside edge of the centre line, while the other path is along the
outside edge of the centre line. The region between the two paths
from CMP can be used for membrane measurements.

3. Membrane boundary extraction algorithm

We outline here the main steps of our algorithm for obtaining
membrane boundary from images using our CMP technique. The
summary steps are:

(1) Locate the approximate centre of the cell. This can be interactive
or automated. For elongated cells, two point positions can be
used.

(2) Add extra control points close to the membrane boundary if
necessary.

(3) Transform the input image in a local region of the cell from
Cartesian to polar coordinate system.

(4) Carry out gradient operation if needed for the multiple paths
cases.

(5) Apply circular single or multiple paths extraction algorithm to
the transformed image.

(6) Convert the paths obtained back to the original image space.
(7) Measure the required information along the membrane bound-

ary.

Fig. 4. The effect of one or two centre points (as shown with the “+” signs) when
carrying out image transformations with complex membrane boundary shapes.
(a) Input image; (b) membrane boundary obtained with a single cell centre; (c)
membrane boundary obtained with two cell centres.

4. Experimental results

In this section we present results obtained from images of
adipocytes expressing epitope-tagged membrane proteins using our
membrane boundary extraction algorithm.

Fig. 3(a) shows an image of a cell; and its membrane boundary,
obtained using our algorithm, is shown in Fig. 3(b). Fig. 3(a) is the
input image. The two contours in Fig. 3(b) shows the inside and out-
side membrane boundary. Fig. 3(c) is the gradient of the transformed
image. Fig. 3(d) is the patched image of Fig. 3(c) with the boundary
overlaid.
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Fig. 5. Membrane boundary extraction with a single path along the centre and two paths along the inside and outside edges. (a) Input image; (b) result with a single path
extracted along the membrane centre line using just image intensity information; (c) result with two paths along the inside and outside edges using gradient information.

Fig. 6. Membrane boundary extraction with control points to correct the path
obtained in Fig. 5(b). (a) Three control points shown with the “×” signs; (b) results
with the use of the three control points.

Fig. 7. More examples for membrane extraction. (a) Input image; (b) eight membrane
boundaries extracted and overlaid on the input image.

Fig. 4 shows the effect of using one or two centre points when
carrying out image transformations with complexmembrane bound-
ary shapes. The centre points used are shown with the “+” signs in
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Table 1
Example measurements on membrane boundaries as shown in Fig. 7(b).

Membrane no. Area Max. int. Mean int. Integrated int. Std. dev. int.

1 1982 255 150.16 297611 63.39
2 3416 255 62.94 215008 35.12
3 4491 255 152.39 684367 57.10
4 2585 255 192.53 497691 59.73
5 1780 255 73.74 131254 40.64
6 3257 236 70.51 229638 42.30
7 3470 255 117.95 409291 53.26
8 3010 222 46.36 139541 30.97

Fig. 8. More examples of membrane extraction on cells in noisy images. (a, c) Subimages of the input images; (b, d) results of our CMP algorithm on (a, c), respectively.

the image. Fig. 4(a) is the input image with membrane boundary of
complex shape. Fig. 4(b) shows the membrane boundary obtained
with a single cell centre; and Fig. 4(c) shows themembrane boundary
obtained with two cell centres.

Fig. 5 shows the results for membrane boundary extraction us-
ing a single path and two paths. The single path is obtained using
single CSP technique based on image intensity information. The two
paths are obtained using the CMP technique based on image gra-
dient information. It can be seen clearly that the CMP method is
muchmore robust compared with the single path method. Fig. 5(a) is
the input image. Fig. 5(b) shows the boundary obtained with errors.
Fig. 5(c) gives the correct inside and outside membrane boundary.

Fig. 6 shows the use of control points to regulate the shape of
the CSP path. Fig. 5(b) is the result without the use of control points.
The membrane boundary obtained is far from the desired boundary.
Fig. 6(a) shows three control points with the “×” signs. Fig. 6(b)
shows the membrane boundary obtained using the three control
points. This boundary is very close to the true membrane boundary.

Fig. 7 shows more examples of membrane boundary extraction
using the CMP method. Fig. 7(b) shows eight membrane boundaries
extracted from the input image shown in Fig. 7(a). Table 1 gives some
example measurements, such as area, maximum intensity, mean in-
tensity, integrated intensity, and standard deviation of intensity, on
the eight membrane boundaries shown in Fig. 7(b). Fig. 8 gives more
examples of our membrane boundary extraction method with cells
in noisy images without using control points.

We have also tested the effect of changing the centre of the cell
on the extraction of membrane boundary. It turns out that the posi-
tion of the cell centre can be very flexible within the cell. As long as
the approximate centre is not too close to the membrane boundary
and there is no boundary folding for a particular viewing direction
from the centre or, in complicated cases, from the two centres, our
algorithm is able to find the correct boundary. For the majority of
membrane boundaries, a single centre position is enough to trans-
form the image in a circular or donut region without the side-effect
of boundary folding or the appearance of multiple values in the

transformed image. For complicated shapes of membrane bound-
ary, the transformation using two points as shown in Figs. 2(b, c) is
needed.

The running time of our algorithm was tested on an Intel
Pentium 4 with a 2.66GHz CPU under the Linux operating system.
Our images were 8 bit/pixel. For colour images, only the intensity
information or a single channel was used. For a 512 × 512 pixel
image, analysis takes about 0.03 s CPU time for the single CSP
method and about 0.4 s CPU time for the CMP method for one mem-
brane boundary extraction. The algorithm described in Ref. [13] for
multiple paths extraction use a multiway trie data structure. This
requires the conversion of floating point gradient data to the range
of [0–255]. An implementation of the method in Ref. [15] can use
floating points data. But the algorithm is much slower.

The use of CMP technique for membrane boundary extraction en-
sures that the boundary obtained for a cell is a closed contour. The
global optimisation property of the shortest path technique via the
use of dynamic programming delivers the global minima or maxima
along the membrane boundary. Because it is a global optimisation
approach, small gaps in a local region can be filled and hence gener-
ate a continuous boundary. The fact that we are obtaining two paths
at the same time along the inside and outside of the membrane
boundary using the gradient information with opposite signs makes
our algorithm very robust compared with a single path method just
using intensity or gradient magnitude information. In contrast, tech-
niques using snakes, level-sets, or watershed may sometimes stop
at local minima, depending on initialisation. The two paths obtained
along the inside and outside boundaries also provide the region for
membrane measurement. If only one path is obtained along the
centre line of the membrane, a region with fixed width along the
membrane may need to be used for measurements.

5. Conclusions

We have introduced a new capability for measuring fluorescence
signals precisely within the plasma membrane compartment. In our
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method, the membrane corresponds to an optimal trace with high-
est integrated intensity or two traces with highest gradient values
along the inside and outside membrane boundary. The boundaries
are obtained through the use of our circular single or multiple paths
technique that ensures a closed contour with maximum intensity or
gradient values along the membrane boundary. The circular multiple
paths are obtained on the polar transformed images. The effective-
ness of our algorithm has been illustrated using many real images.
We are planning to make available the functionalities developed in
this paper in HCA-Vision, our cell analysis software.
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