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Review
Reactive oxygen species (ROS) are postulated to be a
common trigger of insulin resistance. For example, treat-
ment of adipocytes with either tumor-necrosis factor-a or
dexamethasone increases ROS before impairing glucose
uptake. Similarly, treatment with mitochondria-specific
antioxidants preserves insulin sensitivity in animal
models of insulin resistance. However, it remains unclear
whether ROS contribute to insulin resistance in humans.
First-degree relatives (FDRs) of type 2 diabetes subjects
are at increased risk of developing insulin resistance and
type 2 diabetes. Here we review the documented meta-
bolic impairments in FDRs that could contribute to insulin
resistance via increased oxidative stress. We propose that
lipotoxic intermediates and lipid peroxides in skeletal
muscle interfere with insulin signaling and might cause
insulin resistance in these ‘at risk’ individuals.

First-degree relatives of type 2 diabetes individuals – a
model of prediabetes
Type 2 diabetes (T2D) is a disorder characterized by
impaired insulin secretion from pancreatic b-cells and
impaired insulin action on target tissues (termed insulin
resistance). Both characteristics are influenced by genetic
and environmental factors and predict the development of
T2D [1,2]. T2D is associated with an imbalance between
the normal (homeostatic) levels of pro- and antioxidative
agents, commonly termed ‘‘oxidative stress’’ [3]. The pre-
diabetic state is also associated with oxidative stress [4,5],
and recently oxidative stress was suggested as the common
cause of insulin resistance in certain human diseases [6],
an issue addressed in recent reviews [3,7]. To study the role
of oxidative stress in T2D, we can artificially separate the
development of T2D into first, the processes responsible for
the development of insulin resistance, and second the
progression from insulin resistance to T2D. The contri-
bution of oxidative stress in the second stage, i.e. the
progression of insulin resistance into T2D, is currently
better understood than the role it might play in the first
stage, i.e. the development of insulin resistance.

The strong heritability of T2D is well established, and
candidate gene variants have been identified that predo-
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minantly contribute to pancreatic b-cell dysfunction [8].
Studies in twins report high concordance [2], and increased
prevalence of T2D occurs in certain ethnic populations
[9,10]. Offspring of T2D subjects have a 1.5- to 6-fold higher
risk of developing T2D, depending on parental trans-
mission (paternal�maternal<both parents) [11,12]. Thus,
healthy first-degree relatives (FDRs) of T2D subjects are
logical candidates for studies of factors involved in the
pathogenesis of T2D. The earliest processes contributing
to the genesis of insulin resistance can be evaluated in
insulin-sensitive FDRs and compared with individuals of
similar gender, age and overall adiposity but without a
family history of T2D. In this review, we distinguish
between studies of the ‘‘preinsulin resistant’’ stage where
FDRs were insulin-sensitive, and the ‘‘prediabetic’’ stage
where FDRs were already insulin-resistant (and/or glucose
intolerant) but nondiabetic. Although the reviewed studies
are not confounded by dyslipidemia, fasting hyperglycemia
or excess adiposity, studies of insulin-resistant FDRs
might be confounded by insulin resistance itself (and
associated abnormalities).

Skeletal muscle plays a key role in determining
systemic insulin sensitivity because in the postprandial
state, a major proportion of glucose disposal occurs in
skeletal muscle. Glucose uptake occurs in response to
insulin binding to its receptor, stimulating the insulin
signaling cascade, eventually allowing translocation of
the glucose transporter GLUT4 to the plasma membrane.
As with T2D subjects, prediabetic FDRs have reduced
insulin-stimulated glucose uptake and nonoxidative
glucose metabolism in skeletal muscle [13–17]. The
reported molecular defect(s) mediating insulin resistance
in skeletal muscle include impairments in insulin receptor
substrate (IRS) phosphorylation, the phosphoinositol 3-
kinase (PI3K)/Akt pathway and glycogen synthase activity
(reviewed in detail elsewhere [18]). In Table 1, we highlight
elements identified as defective to date in insulin-resistant
FDRs.

In this review, we examine supporting evidence that
oxidative stress induces insulin resistance in insulin-tar-
get cells and in animal models. We critically review the
documented metabolic impairments that could contribute
to insulin resistance via increased oxidative stress in FDRs
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Table 1. Insulin signaling and metabolic impairments in normoglycemic insulin-resistant and insulin-sensitive first-degree relatives
(FDRs) of individuals with type 2 diabetes

Insulin-resistant FDRs Insulin-sensitive FDRs

Insulin signalinga During fasting IRS-1-serine phosphorylation

(inhibitory) [14] "
–

PKB/Akt Ser-phosphorylation

(activating) [63] $
IRS-1 associated PI3K activation [63] "
pAS160 [13] $

During hyperinsulinemia

(hyperinsulinemic clamp)

PKB/Akt Ser-phosphorylation

(activating) [14,63] #
IRS-1-tyrosine phosphorylation

(activating) [63] #
Glycogen synthase activity [16,64] #
Non-linear association between AS160

phosphorylation and glucose uptake in

muscle strips [13]

Skeletal muscle mitochondrial function [17,41] # [33,42] $
Baseline skeletal muscle expression/activity of

enzymes participating in substrate transport and

oxidation

[14] # [33,59] $

Skeletal muscle expression of the PGC1 family [65] # [13,14] $ [33] $
Skeletal muscle mitochondrial content [14,17,41,65] # [34] # [42] $
Metabolic flexibility [66,67] # [33,34] # [42] $
Tumor-necrosis factor-a [68] " [68] $
Intramyocellular triglyceride content [17,67,69,70] " [71] $ [42] $

Arrows indicate higher, lower or similar levels compared to insulin-sensitive control individuals with no relatives with T2D.

In cases where insulin sensitivity was not evaluated, normal glucose tolerant FDRs are compared with normal glucose tolerant control individuals.
aOnly studied in insulin-resistant FDRs.
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and highlight potential areas left to explore. This review is
important because clear evidence that oxidative stress
contributes to insulin resistance in humans is lacking.

Reactive oxygen species induce insulin resistance
in vitro and in animal models
Reactive oxygen species (ROS) and reactive nitrogen
species (RNS) are generated in all biological systems under
aerobic conditions, either intentionally or as byproducts of
physiological processes. An intentional generator of super-
oxide (O2

�) is the membranous enzymatic complex
NADPH-oxidase (NOX) that for many years was thought
to be exclusive to phagocytes [3]. However, it is now known
that multiple members of the NOX family are expressed in
insulin-target cells, including adipocytes (NOX4 [19]) and
muscle cells (NOX2 [20,21], NOX4 [21]). Transient bursts
of low concentrations of ROS via NOX in various tissues
occur in response to a variety of growth factors/hormones
and enhance signaling pathways essential for normal cell
function [22,23]. ROS generated by NOX in response to
insulin binding to its receptor is such an example. Specifi-
cally, in insulin-sensitive cells, upon insulin binding, ROS
released by NOX relieve negative inhibition of the insulin
signaling cascade by oxidizing negative regulators of the
pathway and facilitating the transduction of the insulin
signal downstream [22]. However, NOX can also generate
ROS upon activation by proinflammatory cytokines and
saturated fatty acids that interact with the toll-like re-
ceptor, both implicated in insulin resistance-associated
conditions in adipocytes [3]. When 3T3–L1 adipocytes
are treated with glucose, fatty acids and proinflammatory
cytokines, cellular glucose uptake is reduced through com-
mon pathways that are dependent on ROS generation.
These include molecular targets of the insulin signaling
cascade (Box 1) and stress pathways that act downstream
84
of the insulin signaling pathway, including the nuclear
factor-kB (NF-kB), NH2-terminal Jun kinase (JNK), p38
mitogen-activated protein kinase (p38 MAPK) and protein
kinase C (PKC) [3,6,7,24].

The majority of cellular ROS is produced by mitochon-
dria during ATP synthesis. Specifically, resynthesis of ATP
from ADP is coupled to the oxidation of the reducing
equivalents NADH and FADH2 generated by enzymatic
pathways that metabolize fat, carbohydrates and proteins.
An electrochemical gradient across the inner mitochon-
drial membrane is generated and the energy is used by
ATPase to produce ATP from ADP [25]. Superoxide is
generated by electrons leaking to oxygen from the electron
transport chain (ETC), mainly through complexes I and III
[26]. These anions are released into the mitochondrial
matrix and/or into the intermembrane space, where they
are dismutated rapidly into hydrogen peroxide (H2O2) by
Mn–superoxide dismutase (SOD2) or Cu/Zn–SOD (SOD1),
respectively. The antioxidative enzymes catalase and
glutathione peroxidase (GPx) detoxify H2O2 by its conver-
sion to water and molecular oxygen. Increased mitochon-
drial ROS generation in the vasculature, kidney, neurons,
retina and pancreatic b-cells is implicated in T2D through
hyperglycemia and increased glucose flux into the mito-
chondria [3].

Houstis et al. provided key evidence for a causal role of
mitochondrial ROS in insulin resistance [6]. Specifically,
H2O2 emissionwas detected before any decrease in insulin-
stimulated glucose uptake in 3T3–L1 adipocytes treated
with tumor necrosis factor-a (TNFa) or dexamethasone.
Furthermore, transgenic overexpression of mitochondrial
antioxidants in adipocytes partially prevented glucose
uptake impairment [6]. The role of mitochondria in the
induction of insulin resistance is also evidenced in animal
models of insulin resistance when insulin sensitivity is



Box 1. The insulin signaling cascade, reactive species and

insulin resistance

Insulin plays an essential role in metabolic homeostasis in

mammals by mediating glucose disposal into muscle and adipose

tissue in the postprandial state. The most downstream event in the

cascade of events leading to glucose entry into the cell is the

translocation of the glucose transporter GLUT4 from intracellular

vesicles to the plasma membrane [60]. Defect(s) in any component

of the pathway, from the insulin receptor to the translocation of

GLUT4 to the plasma membrane, might contribute to insulin

resistance [18,60]. Insulin binding to its receptor on the plasma

membrane increases insulin receptor tyrosine kinase activity,

resulting in the phosphorylation of insulin receptor substrates

(IRSs) on tyrosine residues. Phosphorylated IRSs activate phosphoi-

nositol 3-kinase (PI3K) that catalyzes the generation of phosphati-

dylinositol 3,4,5-triphosphate (PIP3) that serves as docking sites for

phosphoinositide-dependent protein kinase-1 (PDK1) and Akt. Akt is

the kinase controlling most of the metabolic actions of insulin and is

activated by phosphorylation at Thr308 and Ser473 by PDK1 and

mammalian target of rapamycin (mTOR), respectively [60].

Putative molecular targets for modification by ROS or RNS in the

insulin signaling pathway include the following possibilities: (i)

oxidative modifications enhance IRS degradation [3,24,48] and

increase IRS serine (inhibitory) phosphorylation [3]; (ii) oxidative

modifications impair Akt activation and inhibit its downstream

targets [3]; (iii) disruption of actin-facilitated spatial organization of

components of the insulin signaling cascade [3]; (iv) S-nitrosylation

of cysteine residues on IRSs and Akt to inhibit their activity [61,62];

and (v) unknown IRS-independent molecular targets downstream of

Akt [60].
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preserved by treatment with mitochondria-targeted anti-
oxidants [6,27,28]. Specifically, ob/ob mice [6] or high-fat
fed C57BL/6 mice [28] treated with the mitochondrial
antioxidant Mn(III)–tetrakis (4-benzoic acid) porphyrin
are more sensitive to insulin than untreated mice (by
the insulin tolerance test, ITT). Treatment of high-fat
fed rats with the mitochondrial-specific small peptide anti-
oxidant SS31 also abolished the development of insulin
resistance (measured by the homeostasis model assess-
ment) [27]. Recently, the transgenic mice approach has
linked muscle mitochondrial overproduction of ROS to
insulin resistance when mice overexpressing mitochon-
drial antioxidants in muscle were partially protected from
insulin resistance under conditions of high-fat feeding
[27,28]. Specifically, overexpression of catalase in skeletal
and cardiac muscle delayed the onset of insulin resistance
during 6 weeks of high-fat feeding (measured by the hyper-
insulinemic-euglycemic clamp) [27], and overexpression of
Mn–SOD in muscle and adipose tissue partially preserved
insulin sensitivity, measured by the ITT [28]. These data
suggest a causal role for muscle mitochondrial ROS gener-
ation in insulin resistance and skeletal muscle mitochon-
dria in particular.

Skeletal muscle metabolic inflexibility, reduced
mitochondrial content and intramyocellular lipids in
FDR
During fasting, skeletal muscle of healthy lean individuals
utilizes fat as the main energy source and under insulin-
stimulated conditions rapidly switches to carbohydrate
oxidation. The ability of skeletal muscle to adapt rapidly
to a change in fuel availability is termed ‘‘metabolic flexi-
bility’’ [29]. Considerable variability inmetabolic flexibility
is found in healthy lean individuals and might stem from
intrinsic properties of skeletal muscle [30]. In fact, myo-
tubes separated from their endocrine milieu and cultured
ex vivo preserve the metabolic characteristics of their
donors, strengthening the hypothesis that metabolic flexi-
bility is, at least in part, genetically (and/or epigenetically)
determined [30]. Metabolic flexibility can be expressed in
terms of the drop in the respiratory quotient in response to
increasing fat intake or during an overnight fast and using
this criterion, prediabetic FDRs are metabolically inflex-
ible (Table 1), a trait also observed in obese [31] and T2D
subjects [32]. Importantly, we and others reported that
insulin-sensitive FDRs also already exhibit metabolic
inflexibility in response to a single high-fat meal [33] or
longer term (3 days) high-fat feeding [34], potentially pre-
disposing these individuals to lipid accumulation in
skeletal muscle and insulin resistance.

In response to high-fat feeding, generally proteins
involved in fatty acid oxidation in skeletal muscle are
upregulated in rodents [35–37]. In particular, increases
are observed in the protein levels of the mitochondrial
biogenesis master regulator, peroxisome proliferator-acti-
vated receptor coactivator-1a (PGC1a) as well as the com-
plexes of mitochondrial ETC and proteins involved in fatty
acid metabolism [35,37]. However, in humans, isocaloric
high-fat feeding causes a coordinated downregulation of
expression of PGC1a, PGC1b and ETC members [38]. Of
note, these findings are based onmRNAexpression and the
translation to the active proteins might be different. In
metabolically inflexible FDRs, we found an impaired abil-
ity to switch on fat oxidation in response to a single high-fat
meal. Along with this, the muscle mRNA expression of
PGC1a tends to increase in control subjects but not in
FDRs; furthermore, other key genes involved in lipid
metabolism such as acetyl CoA–carboxylase-2 (ACC2),
which catalyzes the synthesis of malonyl–CoA, and fatty
acid translocase (FAT/CD36), a membrane fatty acid
transporter, were dysregulated in FDRs compared to con-
trols [33]. A limitation of this study, however, was the low
numbers of subjects examined, and owing to lack of sample
protein levels were not evaluated.

Reduced oxidative capacity in insulin-sensitive FDRs
might also stem from depletion of fatty acid oxidation
machinery, namely mitochondrial content of skeletal
muscle. Mitochondrial size and content are reduced in
skeletal muscle of T2D, obese [39,40] and prediabetic
FDR patients (Table 1). In the latter, depleted mitochon-
drial content was associated with reduced substrate oxi-
dation [41] and ATP production [17], as evaluated by
magnetic resonance spectroscopy (MRS) (Table 1). Ukrop-
cova et al. reported reduced muscle mitochondrial content
by mitochondrial DNA (mtDNA) copy number in insulin-
sensitive FDRs, which correlated with metabolic flexibility
and insulin sensitivity [34]. However, the results regarding
mitochondrial content in insulin-sensitive FDRs are incon-
sistent, and even in diabetic subjects mitochondrial con-
tent of skeletal muscle was similar to that of controls [42].
These inconsistencies might stem from differences in
physical activity between cohorts, which is a major driver
of mitochondrial biogenesis [42], and from the large vari-
ation in results obtained from the mtDNA copy number
85
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and citrate synthase activity assays used to quantify mito-
chondria in muscle. Ultimately, even if not coupled with
reduced mitochondrial content, the observed metabolic
inflexibility might contribute to accumulation of intramyo-
cellular triglycerides (IMTGs) and lipotoxic intermediates
in sedentary individuals with a genetic predisposition to
T2D (Figure 1).

In healthy individuals, IMTGs are a readily available
reservoir of substrates to be oxidized by active skeletal
muscle. Accordingly, exercise training increases IMTG
content and is associated with increased insulin sensitivity
[43,44]. By contrast, in obese T2D patients [45] and in lean
insulin-resistant elderly individuals [46], higher IMTG is
associatedwith lower insulin sensitivity. It is now accepted
that muscle triglycerides are metabolically harmless but
correlate with, and reflect the accumulation of, other lipid
intermediates such as diacylglycerol (DAG), ceramide and
long-chain fatty acyl–CoA (LCFA–CoA) [47]. Each of these
lipid species impairs insulin signaling and causes insulin
resistance by activating stress-signaling pathways in-
cluding NF-kB, JNK, p38 MAPK and PKC [44,48,49]
and/or through ROS production [6]. An efficient coupling
of lipolysis of intramyofibrillar lipid droplets and b-oxi-
dation in adjacent mitochondria prevents the accumu-
lation of lipotoxic intermediates in skeletal muscle and
is the focus of recent research into IMTG accumulation in
health and disease [44,47,50].

Lipid peroxides in skeletal muscle impair insulin
sensitivity in FDRs
In sedentary individuals, the IMTG pool is more prone to
peroxidation owing to its decreased depletion/repletion
rate and its colocalization with mitochondria generated
ROS [44,51]. Russell et al. found that endurance-trained
and obese individuals had similar IMTG content, but lipid
peroxide content was 4-fold higher in obese individuals
Figure 1. Generation of reactive oxygen species (ROS) in skeletal muscle of subjects w

high-fat feeding in a nonobese sedentary individual without a family history (�Famil

oxidation in mitochondria results in increased turnover of IMTGs in skeletal muscle and

in a nonobese individual with a genetic predisposition to type 2 diabetes (+Family

mitochondria, accumulation of IMTGs and lipid intermediates and an increased oxidat
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[52]. Lipid peroxidation products were suggested to induce
insulin resistance through NF-kB activation and increased
TNFa [53]. This might be the case in severely obese
individuals [52]; however, circulating TNFa is not
increased in insulin-sensitive FDRs (Table 1). In any case,
oxidative enzymes of the mitochondrial matrix are sensi-
tive to peroxidation; thus, mitochondrial oxidative capacity
is further impaired by ROS in a vicious circle [51]. Mild
uncoupling of mitochondrial substrate oxidation from ATP
production lowers the mitochondrial proton gradient and
decreases mitochondrial ROS production [51]. The mito-
chondrial uncoupling protein-3 (UCP3) exports fatty acid
anions from themitochondrialmatrix and is induced by the
lipid peroxide product 4-hydroxy nonenal [51]. Decreased
UCP3 levels in glucose intolerant and T2D subjects might
contribute to increased lipid peroxides in skeletal muscle
in these subjects [54]. However, UCP3 levels in skeletal
muscle of FDRs have not yet been examined. Skeletal
muscle lipid content is evaluated in most studies by
MRS, histology and lipid extraction [55] and the level of
the lipotoxic intermediates DAG and ceramide have only
recently been measured in humans [47,56,57]. In fact,
skeletal muscle ceramide [47,56] and DAG [47] content
were elevated in obese insulin-resistant subjects and cor-
related with insulin resistance evaluated by the hyperin-
sulinemic-euglycemic clamp. In FDRs, increased IMTG
was found in some, but not all, insulin-resistant cohorts
(Table 1). Further studies assessing DAG, ceramide, LCFA
and lipid peroxides in skeletal muscle of insulin-sensitive
FDRs are required.

Concluding remarks and future directions
Reactive species have a Janus-like action in modulating
insulin action, with both a facilitating role in insulin signal
transduction as well as the capability to trigger insulin
resistance. On the one hand, a global reduction of hydrogen
ith a genetic predisposition to type 2 diabetes. (a) Flexible metabolic response to

y history) of type 2 diabetes. A fine coupling between lipid availability and lipid

low levels of lipid peroxidation. (b) Inflexible metabolic response to high-fat feeding

history) results in a mismatch between lipid availability and lipid oxidation in

ive stress in skeletal muscle.
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peroxide in animals induces insulin resistance, as shown in
mice overexpressing the intracellular enzyme GPX1 [58],
strengthening the pivotal role of ROS in insulin sig-
naling. On the other hand, recent evidence suggests
ROS as a common trigger of insulin resistance in cells
and animal models [6,7,27,28]. However, oxidative stress
results from multiple underlying mechanisms and cur-
rently there is no unifying measure, and therefore evi-
dence of oxidative stress in key target tissues in insulin
resistance-associated disorders is not consistent [3]. Cur-
rently, research efforts are dedicated to understanding
the underlying mechanisms responsible for IMTG and
lipid accumulation in skeletal muscle [47,50], and gold
standard methods are applied to measure the lipotoxic
species in humans [47]. To this panel of measures, studies
in the field would benefit from adding a measure of lipid
peroxidation products.

We propose that a mismatch between lipid supply and
mitochondrial oxidation capacity in skeletal muscle in insu-
lin-sensitive nonobese sedentary FDRs in the high-fat fed
state favors the accumulation of lipotoxic lipid species in
skeletal muscle. This lipid pool is enriched by reduced
turnover and is susceptible to peroxidation by ROS emer-
ging from the colocalized mitochondria (Figure 1). Thus,
insulin resistance develops because lipotoxic intermediates
and lipid peroxides interfere with insulin signaling. The
beneficial effect of exercise training on insulin resistance in
these subjects is in accordance with this proposal [59].
Future studies should explore the underlying mechanisms
by which lipid peroxides in skeletal muscle induce insulin
resistance. Further studies in insulin-sensitive FDRs are
necessary to evaluate lipid species and peroxidation
products in skeletal muscle. Similarly, it will be important
to challenge these ‘at risk’ individuals with prolonged
high-fat feeding to test the long-term effects of metabolic
inflexibility on insulin sensitivity, mitochondrial function
and skeletal muscle lipid intermediates and peroxidation
products. Such prolonged challenges to skeletal muscle
might magnify potential defects and mechanisms that pre-
dispose these individuals to insulin resistance.
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