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15.1. INTRODUCTION

In recent years, the study of epigenetic alterations such as modification of DNA and packag-
ing of DNA into nucleosomes and chromatin has flourished, as we begin to realize that our
genome is influenced by our epigenome. It is now recognized that epigenetics plays an impor-
tant role in several areas of biology, including phenotypic variation (Dolinoy et al., 2006, 2007;
Guerrero-Bosagna et al., 2008; Kucharski et al., 2008), carcinogenesis (Laird and Jaenisch,
1996; Warnecke and Bestor, 2000; Liu et al., 2003; Cheng et al., 2004; Frigola et al., 2006;
Hinshelwood et al., 2007; Hinshelwood and Clark, 2008), disease etiology (Edwards and Myers,
2007; Hinshelwood and Clark, 2008; Zeisel, 2009), transgenerational transmission of diseases
(Anway et al., 2005, 2006a, 2006b, 2008; Anway and Skinner, 2008; Nilsson et al., 2008),
and ecology and evolutionary biology (Guerrero-Bosagna et al., 2005; Crews and McLachlan,
2006; Bossdorf et al., 2008). The potential for epigenetic alterations to be influenced by envi-
ronmental factors, such as diet, has generated a great deal of interest in further understanding
the underlying mechanism, especially as slight variations in micronutrient consumption appear
to have important consequences in terms of epigenetic alterations and genomic stability. It has
been demonstrated that variations in the consumption of micronutrients can affect DNA synthe-
sis and repair, oxidative damage, and maintenance of methylation (Bull and Fenech, 2008). A
significant amount of research has been conducted to investigate how maternal nutrition affects
epigenetic programming that takes place during early fetal development. Indeed, consumption
of trace elements such as arsenic by the pregnant mother has been shown to alter DNA methy-
lation in early development (Waalkes et al., 2004; Vahter, 2007). Dietary compounds have also
been implicated in the modulation of histone modifications (Delage and Dashwood, 2008), and
consumption of endocrine disruptors or methyl donors has been implicated in changes in DNA
methylation, which will be discussed further in the following sections.
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The specific mechanisms by which nutrient consumption affects the epigenome are yet to be
fully elucidated and as such the scientific literature is littered with controversy. This controversy is
partly due to the fact that DNA methylation can regulate gene expression in opposing ways. DNA
methylation can induce gene expression by preventing repressor binding to promoter regions,
or DNA methylation can also reduce expression by preventing enhancer binding to promoter
regions (Engel et al., 2006; Renaud et al., 2007; Delage and Dashwood, 2008; Ideraabdullah
et al., 2008).

In order to fully understand how nutritional compounds affect the epigenome, key questions
to be addressed are, what classes of compounds are capable of altering these epigenetic states?,
what are the molecular mechanisms of these epigenetic modifications? and what are the onto-
genic critical periods that are particularly susceptible to alterations of these epigenetic states?
In this chapter, we will review the current literature and discuss the role of diet, in particu-
lar flavonoids, on potentially altering the epigenome during development, thereby influencing
phenotypic variation and disease susceptibility.

15.2. EPIGENETIC MECHANISMS OF GENE REGULATION

The best-known and studied epigenetic modification to date is DNA methylation. This process
of DNA modification constitutes a postreplicative modification in which a methyl group is
covalently added to a DNA residue (Laird and Jaenisch, 1996). The chemical reaction of DNA
methylation occurs at the carbon 5 of the cytosine ring in 5′- to 3′-oriented CG dinucleotides
(known as CpGs) and is catalyzed by the action of DNA methyltransferases (Dnmts) (Singal and
Ginder, 1999). The reprogramming of methylation patterns in mammals mainly occurs during
two key periods of development, namely, prior to embryo implantation and during development
of the germ cell (Reik et al., 2001). However, several additional periods have been described
during which there is increased sensitivity to environmental signals, which have the potential to
alter methylation states (Edwards and Myers, 2007).

In addition to DNA methylation, other well-known epigenetic mechanisms include chromatin
condensation and histone modifications. Specific regions on chromatin, referred to as faculta-
tive chromatin, can be transiently condensed or uncondensed during development, which can
lead to variation in gene expression (Wallace and Orr-Weaver, 2005). These chromatin states
are susceptible to modification by specific stimuli such as transcriptional repressors, functional
RNAs, or accessory factors, which exist in macromolecular complexes with other accessory
factors or chromatin proteins (Craig, 2005). Histones, in turn, are susceptible to a variety of
posttranslational modifications such as phosphorylation, acetylation, methylation, ubiquitina-
tion, sumoylation, ADP ribosylation, glycosylation, biotinylation, and carbonylation (Margueron
et al., 2005). It has been suggested that an “epigenetic conversation” exists between histones
and DNA, whereby cytosine methylation and histone modification act in synergy to generate
a self-reinforcing epigenetic cycle that maintains and perpetuates a repressed chromatin state
(Fuks, 2005). Small RNA-regulated gene expression is the newest epigenetic mechanism that
has been described to date and refers to the action of several classes of small RNAs, ranging from
20 to 31 nucleotides in length, on regulating gene expression (Kim, 2006). RNA factors, histone
methylation, and chromatin-remodeling enzymes appear to all act together with DNA methyl-
transferases, resulting in the establishment and maintenance of tissue-specific and site-specific
methylation patterns (Chen and Riggs, 2005).

15.3. NUTRITION AND THE ENZYMATIC PROCESS
OF DNA METHYLATION

Nutrition is a critical component of the environmental influence on the epigenome. This is es-
pecially important for the enzymatic process of DNA methylation, which requires the presence
of methyl group substrates, commonly derived from the diet. Dietary sources of methyl groups
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that can affect DNA methylation include folic acid, betaine, zinc, and vitamin B12. These
components ultimately influence the metabolism of methionine and S-adenosyl methionine
(SAM) (Van den Veyver, 2002). SAM is formed from methyl groups derived from choline,
methionine, or methyl-tetrahydrofolate, and is the primary methyl donor for the various methyl-
transferase enzymes within an organism (Zeisel, 2009). The end product of SAM metabolism is
S-adenosylhomocysteine (SAH), which forms a negative feedback loop via direct inhibition of
these methylation reactions (Hirsch et al., 2008; Piyathilake et al., 2008). There is a correlation
between the availability of methyl groups in the diet and levels in an organism. Specifically, it
has been shown that the amount of folate in the diet can directly influence the level of these
compounds in blood cells (Hirsch et al., 2008).

As mentioned previously, DNA methyltransferase enzymes (Dnmts) catalyze DNA methy-
lation reactions. There are several known Dnmts, each with distinct but at times overlapping
roles. Dnmt3A and Dnmt3B are involved in the establishment of methylation patterns during
early development, acting as de novo methyltransferases on unmethylated DNA (Yokochi and
Robertson, 2002). Dnmt1 is in turn responsible for the maintenance of these patterns, since its
preferential substrate is hemimethylated DNA (Yoder et al., 1997). The expression of Dnmts is
also influenced by nutrition. A recent study suggests a link between dietary folate levels and
Dnmt1 expression. An increase in the expression of Dnmt1 was observed in cervical intraep-
ithelial neoplasia samples compared with samples collected prior to mandatory fortification of
grain products with folic acid in the United States (Piyathilake et al., 2008). Dnmt1 has also been
shown to be reduced in the liver of rat offspring born to protein-restricted mothers (Lillycrop
et al., 2007).

Possibly the best-known model for the study of methyl donors in the diet and the effect
on DNA methylation status is the agouti mouse model. This model is based on detecting
changes in methylation in the mouse Avy allele, which can be easily observed as changes in
coat color. Decreasing methylation of the Avy allele, specifically in an intracisternal A particle
(IAP) retrotransposon located upstream of the Agouti gene, correlates with a coat color shift
from yellow-agouti to yellow (Cooney et al., 2002). Changes in maternal consumption of methyl
groups leads to changes in the coat color of offspring, and this coat color can be correlated to
the predicted changes in methylation in the Avy allele (Cooney et al., 2002). Methyl donors can
also alter the epigenetic state of the Avy allele which exposure in utero is transient and during
the period of germ line differentiation. This effect, which occurs in the male germ line (Cropley
et al., 2006) but not in the female germ line (Waterland et al., 2007), also has implications for the
offspring (F2) of those mice exposed to methyl donors in utero. Some experiments have taken
advantage of other properties of the Avy allele, such as its association with obesity (Yen et al.,
1994; Dolinoy et al., 2006). Transgenerational exposure of Avy/a mouse to an ad libitum diet
produces amplification of obesity, an effect that is suppressed when the diet is supplemented with
extra methyl donors such as folic acid, vitamin B12, betaine, and choline (Waterland et al., 2008).

Another model has been developed recently to study folates and methylation. This model
takes advantage of another IAP, located upstream of the promoter of Axin fused. In this case,
high levels of methylation of Axin fused (expressed specifically in the tail) are associated
with a straight tail phenotype, while reduced levels of methylation correlate with a kinky tail
phenotype (Waterland et al., 2006). In this model, the Axin fused DNA methylation-associated
tail phenotype is dependent on pre- and postnatal dietary methyl group exposure.

It is interesting to note that these effects are all maternally mediated. It is clear that there are
critical periods in which DNA methylation patterns are particularly susceptible to reprogram-
ming. These critical periods include the period from fecundation to blastocyst preimplantation,
and also early germ line differentiation (Reik et al., 2001), although other sensitive periods have
also been described (Edwards and Myers, 2007). Although epigenetic programming in utero
has traditionally been thought to be irreversible, a recent study has shown that epigenetic
changes mediated by the maternal diet can be reversed after folic acid supplementation in the
juvenile–pubertal period (Burdge et al., 2009); however, the mechanism by which this occurs is
yet to be determined.
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15.4. DIETARY FLAVONOIDS AND EPIGENETIC CHANGES

Flavonoids (or isoflavones) are a class of compounds produced by plants that have estrogenic
actions in animals (Liggins et al., 2000); therefore, they are named as phytoestrogens. The
physiological effect produced by these agents is known as endocrine disruption. In particular,
consumption of these compounds can produce reproductive effects in mammals (Adams, 1981;
Adams et al., 1981; Santell et al., 1997; Gallo et al., 1999; Guerrero-Bosagna et al., 2008),
including humans (Pino et al., 2000), where transmission of isoflavones from mother to child
has also been reported (Franke et al., 2006). In humans, flavonoid consumption may delay
breast development (Wolff et al., 2008) and may have a protective effect against breast cancer
(Thanos et al., 2006). Nevertheless, this effect would be protective only if the exposure is
during childhood/adolescence (Warri et al., 2008; Lee et al., 2009). This protection would occur
through upregulation of breast cancer tumor suppressors such as BRCA1 (Warri et al., 2008). It is
interesting to note, however, that the cancer protective effect of flavonoids occurs only in certain
organs (Cotterchio et al., 2006). This has been attributed to the action of selective estrogen
receptor modulators (SERMs) that lead to tissue-specific agonistic or antagonistic effects of
compounds with estrogenic action (McDonnell, 1999).

A possible pathway to explain these cancer protective effects of flavonoids are epigenetic
mechanisms such as DNA methylation. Evidence for epigenetic changes produced by expo-
sure to endocrine disrupting chemicals (such as flavonoids) has been increasing in recent years
(Guerrero-Bosagna and Valladares, 2007). For example, administration of the phytoestrogens
coumestrol and equol to newborn mice increase DNA methylation at the proto-oncogene H-ras,
resulting in its inactivation (Lyn-Cook et al., 1995). DNA methylation patterns have also shown
to be altered in 8-week-old mice after consumption of high doses of the phytoestrogen genistein
(Day et al., 2002). It has been hypothesized that phytoestrogens could affect the establishment
of methylation patterns in the offspring due to a maternal effect (McLachlan, 2001; Guerrero-
Bosagna et al., 2005). The Agouti mouse model has been used as evidence for this effect of
phytochemicals. Maternal treatment with bisphenol A (BPA) results in hypomethylation of the
Avy allele. However, this hypomethylation is inhibited by maternal dietary supplementation with
either methyl donors or genistein (Dolinoy et al., 2007). Recently, in mice, gender-specific
changes in Acta1 gene methylation have been shown as a response to a diet rich in the phytoe-
strogens genistein and daidzein (Guerrero-Bosagna et al., 2008). An independent study has also
shown that neonatal exposure of female mice to high levels of genistein results in tissue-specific
hypermethylation in the gene Nsbp1 in the uterus (Tang et al., 2008).

The effect of dietary phytochemicals on the epigenome is not just limited to DNA methylation.
It has been shown that in prostate cancer, genistein can have a protective effect via histone
demethylation and/or acetylation and chromatin remodeling of tumor suppressor genes, resulting
in their activation (Kikuno et al., 2008; Majid et al., 2008). A very complete study of the role
of genistein on the repression of breast cancer in human cultured cancerous and precancerous
cells has been published by Li et al. (2009). The authors showed that genistein promotes
hypomethylation of the E2F-1 sites in the hTERT (human telomerase reverse transcriptase)
promoter, which leads to increasing binding of E2F-1 and inhibition of hTERT transcription.
Moreover, they found that genistein also reduced expression of Dnmt1, Dnmt3a, and Dnmat3b
in these breast cancer cells and changed methylation in H3K9 and H3K4 histones at the hTERT
promoter (Li et al., 2009).

15.5. A PROPOSED MECHANISM FOR
ENDOCRINE-MEDIATED FLAVONOID ACTION
ON EARLY MAMMALIAN EMBRYOS

Considering the direct effects of flavonoid consumption on mothers and the indirect epigenetic
effects on the developing embryo, a necessary question is about the mechanisms implicated
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in this mother-to-embryo flavonoid action. In previous reports (Guerrero-Bosagna et al., 2005,
2008) we proposed that this flavonoid action could occur either directly, through the presence
of flavonoids in uterine secretions, or indirectly, mediated by other compounds secreted in the
uterine epithelia such as 4-OH-17�-estradiol, responding to circulating levels of flavonoids. It
is not known whether flavonoids can act directly upon the developing embryo. Nevertheless,
recent evidence supports the fact that intrauterine secretions are indeed affected by the maternal
consumption of isoflavones. For example, the known cause of infertility in female mice that con-
sumed the flavonoid genistein could be that uteri of genistein-treated females are not capable of
supporting normal implantation (Jefferson et al., 2009). In fact, maternal genistein consumption
is able to alter uterine wet weight and gene expression in the offspring, in which, a particularly
striking change is observed in the expression of the estrogenic marker complement-C3 gene in
juveniles (Moller et al., 2009).

The relationship between maternal flavonoids and the machinery of DNA methylation in
the preimplantational embryo could be mediated by c-fos expression. Interestingly, previous
evidence shows that both Dnmt1 expression and activity can be directly upregulated by c-fos
(Bakin and Curran, 1999) or v-fos (Ordway et al., 2004), and that induction of c-fos is attributed
to membrane-mediated estrogen actions (Das et al., 2000). Studies in pancreatic � cells show
that this is an alternative mechanism to the classical estrogen response involving receptors
� and � (Nadal et al., 2000). Therefore, membrane-mediated estrogenic actions would first
induce c-fos and then activate the Dnmt1 enzyme. This indirect and membrane-mediated
mechanism of c-fos activation could also occur in blastocysts. For example, the activation
of latent preimplantational blastocysts due to the uterine synthesis of the catecholestrogen
4-OH-17�-estradiol can also occur via a pathway distinct from the classical nuclear estrogen
receptors (Paria et al., 1998). In this indirect pathway, levels of 4-OH-17�-estradiol increase
with the epithelial growth factor (EGF) receptor (Paria et al., 1998). Interestingly, increasing
the expression of EGF receptor would also be correlated to the activation of c-fos (Kamiya
et al., 1996). A direct induction of c-fos by estrogen via an estrogen receptor element (Hyder
et al., 1992) has also been shown in different cell types (Allen et al., 1997; Garcia et al.,
2000). Recently, a study in lactotrophs showed that estrogens have no effect in the induction of
c-fos caused by EGF (Chen et al., 2009), a finding that gives support to the idea that a Dnmt1
induction mediated by the fos pathway is not induced by the classical estrogen receptors � and �
but would be initiated by the membrane receptor suggested by Nadal et al. (2000), which would
respond to uterine cathecol estrogens (Paria et al., 1998). In summary, there is a possibility that
estrogenic actions could induce c-fos, either directly, through an estrogen receptor element in the
gene, or indirectly, through membrane-mediated reactions. Figure 15.1 summarizes the possible
pathways via which an estrogenic stimulus could influence DNA methylation in developing
embryos.

15.6. EPIGENETICS AND NUTRITIONAL
EPIDEMIOLOGIC STUDIES

An interesting and necessary approach to study epigenetic modifications that correlate with
nutrition is at a population level. This approach requires the study of epigenetic mechanisms in
epidemiological studies. In nature, an example of how nutrition can influence populations comes
from honeybees. Using Dnmt3 RNA interference it was found that reduced levels of Dnmt3
were associated with an increased proportion of queens compared with worker bees, an effect
that mimics the consumption of royal jelly (Kucharski et al., 2008). This example highlights the
extent to which nutritional components may influence the epigenetic make-up of organisms and
how this may affect whole populations. Given the recent national implementation of folic acid
supplementation of foods in several countries including the United States, Canada, Costa Rica,
and Chile, and active debate in several European countries plus Australia and New Zealand to
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Figure 15.1. Possible pathways via which an estrogenic stimulus could influence DNA methyla-
tion in developing embryos.

proceed with national strategies of folic acid fortification (Kim, 2007), a deeper understanding
of how nutrition affects the epigenome is paramount.

Despite the importance of understanding the consequences of epigenetic modification from
a population perspective, epidemiological studies involving DNA methylation are still in their
infancy. Most of these studies only evaluate global methylation (Axume et al., 2007a, 2007b;
Pilsner et al., 2007), which will only undercover drastic changes in methylation patterns and
underestimate local gene changes that may be a determinant for the establishment of a pheno-
type. In addition, although the timing of exposure to dietary methyl supplements is a critical
determinant of phenotypic outcome, it is often not considered. DNA methylation patterns are
established early during development (Reik et al., 2001) and once established are maintained for
the life of the individual by the action of Dnmt1 (Li et al., 1993; Bestor, 2000). Therefore in the
adult, drastic changes in global methylation patterns should not occur in a short space of time.
If, however, there is modification of dietary methyl groups, over the lifetime of an individual the
activity of Dnmt1 may be affected, which will lead to changes in global methylation patterns as
the individual ages. This is highlighted by the study discussed above in which the expression of
Dnmt1 was higher in cervical intraepithelial neoplasia after the introduction of dietary folate in
the United States (Piyathilake et al., 2008).
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One study that considered gene-specific methylation was performed by Van Den Donk et al.
(2007a). In this study, subjects with previous colorectal adenomas were treated for a period of
6 months with folic acid and vitamin B12 dietary supplementation. Analysis of methylation in the
genes O-MGMT and hMLH in rectal biopsies showed no major changes in methylation after the
intervention, even though significant increases in erythrocyte folates were observed (Van Den
Donk et al., 2007a). The same group also investigated methylation in the MTHFR (methylenete-
trahydrofolate reductase) gene, which encodes an important enzyme in folate metabolism, and
correlated this to folate intake and genotype of the individual. Results demonstrated that fo-
late consumption was inversely correlated with promoter methylation in colorectal adenomas;
however, there was a positive correlation between folate intake and the occurrence of adenomas
without promoter methylation (Van Den Donk et al., 2007b).

An independent study that also investigated gene-specific methylation analysis was performed
by Hirsch et al. (2008). In this study SAM and SAH concentrations, SAM/SAH ratio, methylation
in the promoter region of the ec-SOD (extra cellular superoxide dismutase) gene, and ec-SOD
activity were assessed in healthy men who were categorized in quintiles according to their folate
status. Previously, it was shown that high ec-SOD expression in the arterial wall correlated with
prevention of oxidation of cellular proteins and low-density lipoproteins, and with inactivation of
nitric oxide (an endothelium-derived relaxing factor) (Fattman et al., 2003). Hirsch et al. (2008)
showed that serum folate concentration in the highest quintile was associated with increased
erythrocyte SAM and SAH concentrations, but not with SAM/SAH ratio, nor with changes in
ec-SOD methylation. These types of studies are a very important first step in applying gene-
specific methods of measuring DNA methylation; however, further studies need to be done
in which the epigenetic status of more genes that associate with SAM/SAH metabolism are
interrogated.

Methylation of the MnSOD gene has been studied by Thaler et al. (2009). In this study,
methylation of the MnSOD promoter in samples from the buccal mucosa was determined to be
reduced in vegetarian people compared with age-matched and older omnivores. This reduction
in methylation correlated with increased expression of MnSOD (Thaler et al., 2009). These
findings have important implications when considering certain features of vegetarian diets.
These diets are low in vitamin B12, which reduces the methionine content (Geisel et al., 2005),
but are rich in flavonoids, which, as shown above, is an important factor in triggering specific
methylation patterns. In fact, there are marked differences in isoflavone consumption between
Asian and occidental countries, being much higher in the former (Mulligan et al., 2007).

An epidemiologic study that incorporates both gene-level methylation analysis and also timing
of exposure have been performed by Heijmans et al. (2008). The methylation status of the Igf2
imprinted gene was analyzed in individuals who were exposed during gestation to the caloric
restriction imposed by the Nazi regime in Holland, a period known as the “Dutch Hunger
Winter.” The methylation of Igf2 was shown to be reduced in adults that were in utero during
the “Dutch Hunger Winter” (Heijmans et al., 2008).

15.7. DNA METHYLATION AND DISEASES

The epigenetic and developmental basis of several diseases is well characterized and widely
accepted as contributing to the incidence and pathogenesis of disease (Godfrey et al., 2007;
Hanson and Gluckman, 2008). However, when we consider the implications of nutrition in
epigenetic modifications, the obvious assumption is that nutrition will also have a significant
effect on some of these diseases. Indeed, some studies have suggested a link between cancer
incidence and folate intake, which would likely help to protect against cancer via maintenance
of methylation (James et al., 2003; Pogribny et al., 2006) or via prevention of hypermethylation
in certain gene promoters such as tumor suppressor genes (Bhave et al., 1988; Dizik et al., 1991;
Nan et al., 2005).
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In general terms, cancer is a disease of an aging population. Since changes in the epigenome
have been implicated in carcinogenesis, it follows that epigenetic modifications may also be
influenced by age. Previously it has been shown that the p16 gene product is a tumor suppressor,
and loss of function secondary to hypermethylation is associated with human colorectal carcino-
genesis (Wiencke et al., 1999). Keyes et al. (2007) evaluated the effect of aging combined with
folate intake on the expression and methylation of p16 in the mouse colon. Results of this study
demonstrated that, interestingly, both promoter methylation and expression of p16 increase with
age. Moreover, this increase in methylation and expression was more striking in mice that were
methyl-supplemented (Keyes et al., 2007).

Hyperhomocysteinemia is a condition that is associated with atherosclerosis and an elevation
in plasma homocystein (a precursor of SAM). Patients with hyperhomocysteinemia are at an
increased risk of developing cardiovascular disease (Becker et al., 2003). Nutritional factors,
in particular consumption of methyl donors and DNA methylation during early arteriosclero-
sis, have been implicated in the development of hyperhomocysteinemia (Zaina et al., 2005).
Specifically, Devlin et al. (2007) have shown that hyperhomocysteinemia is associated with
hypermethylation and silencing of liver Fads2 (involved in elongation of essential fatty acids)
in mice. This evidence, together with changes in liver fatty acids, may help to explain the
pathogenesis of hyperhomocysteinemia (Devlin et al., 2007).

15.8. CONCLUDING REMARKS

Throughout the genome, specific regions of DNA are normally methylated whereas other regions
are normally unmethylated. This “normal” pattern of genomic DNA methylation is important
for the appropriate expression of genes and homeostasis of the organism (Singal and Ginder,
1999; Bestor, 2000; Jones and Takai, 2001). It is becoming clear that dietary consumption of
some compounds significantly influences specific methylation patterns of the genome. It seems,
however, that the individual effect can be tissue and gene specific and also dependent on the
timing of consumption in relation to the ontogeny of an organism. Therefore the coordinated
action of these dietary compounds would be critical for the establishment of a specific epigeno-
type and associated phenotype. Moreover, since this epigenetic map is affected by nutrition,
cultural aspects in relation to diet would also define epigenotypes associated with different
human populations.

Several nutritional compounds are known to influence the establishment of epigenetic patterns
in mammals and some of these are differentially consumed by human populations. Of these
nutritional compounds that are known to produce changes in methylation, special emphasis
should be given to methyl groups and flavonoids. Methyl groups interact with the already well-
known methyl cycle, which include SAM and SAH metabolism. Nevertheless, the action of
flavonoids on DNA methylation is still unknown. Here we propose a mechanism in which this
action could be taking place. This mechanism could be mediated by a nonclassical estrogenic
pathway, which includes membrane receptor actions of uterine secretions on preimplantational
blastocysts.

The role of epigenome modifications in the development of human disease will be the focus
of ongoing research. The relationship between epigenetic, genetic, and developmental causes of
disease will gain importance in future studies. These relationships may shed some light on the
epidemiology of human disease, with specific focus on the epigenetic patterns of populations.
This understanding will likely lead to new prevention strategies and recommendations for
specific diseases, from both an epidemiological and political levels. Finally, the mechanisms
by which specific methylation patterns are established and how exposure to certain substances,
including nutritional compounds, can trigger changes in methylation in one region of the genome
and not another remain to be elucidated.
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