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Abstract Growth hormone (GH) regulates somatic growth,
substrate metabolism and body composition. Its actions are
elaborated through the GH receptor (GHR). GHR signalling
involves the role of at least three major pathways, STATs,
MAPK, and PI3-kinase/Akt. GH receptor function can be
modulated by changes to the ligand, to the receptor or by
factors regulating signal transduction. Insights on the physico-
chemical basis of the binding of GH to its receptor and the
stoichiometry required for activation of the GH receptor-
dimer has led to the development of novel GH agonists and
antagonists. Owing to the fact that GH has short half-life,
several approaches have been taken to create long-acting
GHR agonists. This includes the pegylation, sustained release
formulations, and ligand-receptor fusion proteins. Pegylation
of a GH analogue (pegvisomant) which binds but not activate
signal transduction forms the basis of a new successful
approach to the treatment of acromegaly. GH receptors can
be regulated at a number of levels, by modifying receptor
expression, surface availability and signalling. Insulin, thyroid
hormones and sex hormones are among hormones that
modulate GHR through some of these mechanisms. Estrogens
inhibit GH signalling by stimulating the expression of SOCS
proteins which are negative regulators of cytokine receptor
signalling. This review of GHR modulators will cover the
effects of ligand modification, and of factors regulating
receptor expression and signalling.
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1 Introduction

GH regulates somatic growth, substrate metabolism and
body composition. Its actions are elaborated through the
GH receptor (GHR), a member of the cytokine superfamily
that includes receptors for prolactin, erythropoetin, leptin,
and the interleukins. Since the cloning of the GHR over
20 years ago in 1987, major advances have been made in
the understanding of its structure and function providing
insights into the mechanism of GH action on cells, the
signalling pathways and their regulation. Work on the
physico-chemical basis of the binding of GH to its receptor
and the stoichiometry required for receptor activation has
led to the development of GH analogues.

These collective findings have indicated that the action
of GH can be regulated at a number of levels, by modifying
ligand, receptor expression and signalling. This review of
GHRmodulators will cover the effects of ligand modification,
and of factors regulating receptor expression and signalling.

2 GHR structure and signalling

The crystallization of the extracellular domain of the GHR
revealed a 1:2 stoichiometric relationship of GH to its
receptor [1], indicating that dimerization of GHR is an
initial and crucial event in GH signalling (Fig. 1a). GH is a
four helix bundle with an unusual topology and GH binding
to GHR is mediated by two asymmetric binding sites on
GH [2]. In early models, GH binding to GHR monomers
was thought to be sequential. The initial step of GH binding
to its receptor involves high-affinity binding of site 1 to one
GHR monomer followed by lower affinity binding of site
2 to a second GHR monomer [3]. Recent studies indicate
that GHRs exist as pre-formed dimer, as is also the case
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for other class I cytokine receptors, such as the erythro-
poietin receptor. A conformational change in the extracel-
lular domain of the GHR is triggered by GH binding which
initiates signalling [4].

In common with cytokine receptors, the GHR is devoid
of enzymatic activity with signal transduction mediated by
Janus kinase (JAK) 2 [5, 6]. JAK2 activation is triggered by
GH binding which induces conformational change of the
GHR resulting in JAK2 transphosphorylation and catalytic
activation. The phosophorylation of the receptor results in
the activation of a number of signalling pathways. The
JAK–STAT pathway is a major effector of GHR signalling,
and necessary for the transcriptional regulation of IGF-I.
The mitogen activated protein kinase (MAPK) pathway,
and the phosphatidylinositol 3′-kinase (PI3K) pathway are
also activated by JAK2 transphosphorylation (Fig. 2) [7].
The termination of GHR signalling is an important mecha-
nism for controlling GH action. This is controlled by two
systems, the suppressors of cytokine signalling (SOCS)
proteins and the protein tyrosine phosphatases (PTPs). GH
induces the expression of SOCS-1, SOCS-2, and SOCS-3,
which feed back to inhibit its transcriptional action [8, 9].
SOCS2 deficient mice displayed an excessive growth pheno-
type [10]. Among the PTPs, SHP1 and SHP-2 inactivate the
receptor by dephosphorylating JAK2 [11].

3 GHR function

Defective signalling arising from mutations of the GHR
cause growth retardation. The syndrome of GH insensitivity

(GHIS) was first identified in 1966 by Laron et al. in three
siblings with severe growth retardation, manifesting high
level of GH in circulation [12, 13]. A structural defect in
GHR gene was first described in 1989 [14, 15]. Since then
more than 70 GHR gene mutations have been identified
[15]. The majority of the GHR abnormalities are located in
the extracellular domain of the receptor [16–19]. GHR
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Fig. 1 The figure shows pro-
posed principle of antagonism
by B2036, a GHR antagonist. a
Schematic representation of
normal GH signalling, in which
GH binds to two identical cell-
surface receptors, resulting in
receptor dimerization. b Sche-
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nist has an amino acid
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2 binding that disrupts binding
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Fig. 2 This schematic diagram shows major GH receptor signalling
pathways. GH binding to the GHR induces conformational change of
the GHR, which activates JAK2. The phosphorylated JAK2 initiates a
multitude of signalling cascades including major signalling pathways
such as JAK/STAT, PI3K/AKT and MAPK pathways. Among them
JAK/STAT pathway is critical for a variety of GH functions and
necessary for the transcriptional regulation of IGF-I
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mutations can affect the ability of the receptor to either bind
GH, dimerize, anchor or migrate to the cell membrane.
There are two reports of mutations of GHR gene that result
in a selective loss of STAT5b signalling [20, 21].

Recent studies have shown that GHRs exist as pre-
formed dimers that activate signal transduction following
conformational change induced ligand binding. Interesting-
ly a number of monoclonal antibodies directed to the GHR
manifest agonistic activity. Some monoclonal antibodies
against the GHR exhibit prolonged activation of the GHR
[4]. The best characterised of these is mAb 263. It does not
bind within the hormone binding surface but binds in a way
that promotes the conformational change necessary to
activate the signalling cascade [22].

Knowledge of the physical chemical properties of the
binding sites has led to engineering of the molecules to
produce agonist and antagonist by amino acid substitution
that enhances or inhibits binding.

4 GHR ligands

4.1 GHR agonists

Growth hormone is the only natural ligand of the GHR.
GH is a 191-amino acid, single chain 22 kDA polypeptide
hormone, consisting of four helical structures. Two domains
within the GH molecule are involved in receptor binding
(see [23]). The current regimen for growth hormone replace-
ment requires once-daily injections, which is inconvenient.
Several approaches have been taken to create long-acting
preparations. This includes pegylated hormones, sustained
release formulations, ligand-receptor fusion proteins, and GH
analogs.

4.1.1 Pegylated GH modification

Pegylation (covalent attachment of polyethylene glycol
polymer chains to another molecule; PEG) increases the
plasma half-life of GH by reducing renal clearance and
intravascular proteolysis [24, 25]. Despite a reduction in
GHR affinity, the in vivo efficacy of pegylated GH in-
creases with higher level of pegylated modification and
reaches an optimum at five PEG5000 groups per hGH [24].
In hypophysectomized rat model, injections of pegylated
GH analogs increased weight gain by about 10-fold
compared to that of unpegylated hGH [24]. Pegylated GH
analogs are currently being evaluated in human trials.
Although longer acting, pegylation reduces receptor affinity
and therefore a greater dose of hormone is required. As the
cost involved is high, sustained release GH formulations
have also been developed as another strategy to prolong
effect of GH.

4.1.2 Sustained release formulations

This approach is based on the encapsulation of GH in
microspheres of biodegradable copolymers. Two sustained
release preparations, Nutropin Depot® [26–29] and hGH-
Biosphere® [30] have been studied the most. The latter has
a superior release profile based on the IGF-I generated per
mass of administered GH. Nutropin Depot® increase serum
levels of GH and IGF-I in adults and children with GH
deficiency [26–28, 31]. The catch-up growth observed in
those children was significant, although to a lesser degree
than with daily GH injections. In GH deficient adults,
8 months treatment with Nutropin Depot® decreased trunk
and visceral adipose tissue and increased lean body mass as
effectively as with daily GH administration [29].

However there are certain problems arising from sus-
tained release microspheres, including initial high release
and those arising from degradation of microspheres, such as
acidic microenvironment and protein denaturation. Therefore
other sustained release GH formulations have been developed
based on hydroxyethyl methacrylated dextran [32] or sodium
hyaluronate microparticles [33, 34]. However whether these
are superior to Nutropin Depot® or hGH-Biosphere® is not
yet known.

4.1.3 Ligand–receptor fusion proteins

The extracellular domain of the GHR is proteolytically
cleaved and circulates as a GH binding protein (GHBP).
When bound to GHBP, GH has delayed clearance and
degradation prolonging its half life [35]. GHBP when co-
administered together with GH, augments the effect of GH
on weight gain and bone growth in rat models of GH
deficiency [36]. Ross and colleagues [37] have fused
recombinant human GH with the GHBP via a flexible
linker. The clearance of the fusion protein was 300 times
slower than that of GH after bolus injection in the rat, and
the terminal half-life was a 100-times longer than that of
GH. The authors reported that a single injection of the
ligand-receptor fusion results in a weight gain of hypophy-
sectomized rats over 10 days that was equivalent to that
obtained with an equimolar dose of growth hormone injected
daily. The administration of ligand-receptor fusion protein
also resulted in IGF-I concentrations that were significantly
greater than those seen after daily injection of GH. Thus, the
ligand-receptor fusion of 75 kDa is more potent than hGH
and seems promising as a potential therapeutic formulation.

4.1.4 GH analogs

One way of increasing hGH potency is by introducing
mutations at the GH binding sites to enhance its binding
affinity [38]. Waters and colleagues have reported that
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increase in site 1 binding affinity of porcine GH improves
biopotency [23, 39]. The increased biopotency of GH can
be explained by a model for GH receptor activation where
subunit alignment is critical for effective signalling. Substi-
tution of four different residues in site 1 from human GH into
porcine GH, increased cell proliferation when compared
to porcine GH [39]. The higher potency is linked to a
decreased dissociation rate between the ligand and the
receptor. Thus, selected amino acid substitution in critical
GH binding sites can lead to prolonged activation of the
receptor and improve GH potency. Conversely, engineered
amino acid substitution that result in reduced binding has
been used to develop GH antagonists.

4.2 GHR antagonists

4.2.1 Development of GHR antagonists

Chen et al. pioneered the development of GH antagonist by
engineering a mutation in site 2 of GH to reduce affinity to
the GHR [40]. Based on early studies showing that position
120 of hGH was crucial to GH binding to the GHR (Fig. 1b)
[41–43], a glycine to lysine substitution resulted in the
generation of an analogue which antagonized GH-induced
JAK2 activation and downstream tyrosine phosphorylation
[44, 45].

Previously eight amino acids had been identified that
when altered, increased the binding affinity of GH site 1 to
the GHR [46]. When combined with the G120K alteration,
the mutations that enhance site 1 affinity resulted in a
potent antagonist, B2036. Pegylation of B2036 (B2036-
PEG) increased half-life of B2036 to 72-h compared with
16 min for native GH and lowered immunogenicity. B2036-
PEG (pegvisomant) binds to the GH receptor and induced
receptor internalization [47]. It was introduced for human
trials in the late 1990s and since then has been established
as a safe and effective treatment for acromegaly [48].

Although pegvisomant effectively lowers IGF-I levels in
acromegaly, a disadvantage is as administered by daily
injections. Orally active GHR antagonists are under develop-
ment. BVT-A ((N-[5-(aminosulfonyl)-2-methylphenyl]-
5-bromo-2-furamide), is a small molecule which shows
promise as a GH receptor antagonist in vivo. The small
molecular weight compound down-regulates GH-stimulated
IGF-I expression [49]. Administration of BVT-A suppresses
serum IGF-I, hepatic mRNA levels of IGF-I, IGF-BP3, ALS,
and the IGF-I and GH receptors in hypophysectomized rats
[50].

4.2.2 Pegvisomant

Several studies have established pegvisomant as effec-
tive treatment of acromegaly. Daily injection of 40 mg

of pegvisomant blocks the growth hormone-mediated
generation of IGF-I in approximately 90% of patients, and
improves soft-tissue manifestations of the disease [51–54].
Pegvisomant also improves glucose tolerance and insulin
sensitivity in acromegaly [55–59]. Pegvisomant treatment
is accompanied by a dose-dependent and reversible rise in
GH concentration [51]. The cause has not been elucidated
and could be the result of increased GH secretion or
delayed clearance.

Concern has been raised as to whether the increase in
circulating GH level represents tumor growth as pegvisomant
dose not act directly at the tumor. Although no significant
increase in tumor size was observed over 12 months of
observation in a large group of patients [51, 52], longer term
studies are required to ascertain whether the tumor growth is
affected by pegvisomant treatment.

The therapeutic potential of pegvisomant has been ex-
plored in a number of disease states where GH or GH-
dependent growth factors are thought to have a pathogenic
role. Animal studies have shown that pegvisomant limits the
degree of diabetic glomerulopathy [60]. Since pegvisomant
has sustained suppressive effect on IGF-I and IGF-II [61],
the therapeutic potential of pegvisomant in anti-cancer
treatment for IGF dependent cancers, such as breast and
colorectal cancer, are being investigated. Recently pegvisom-
ant has been reported to inhibit the growth of meningioma
[62], colon cancer [63] and breast cancer cells in rodents
[64].

5 Factors modulating the GH receptor

Many factors are known to regulate the responsiveness of
the GH receptor to GH. The most important are insulin,
thyroid and sex hormones. The effects on GH receptor
expression and function will be reviewed.

5.1 Insulin

The growth-promoting action of GH is mediated by IGF-I
which is produced mainly in the liver, but also in extra-
hepatic tissues. There is strong evidence that the anabolic
action of GH requires the presence of insulin and adequate
nutrition. This is exemplified in type 1 diabetes where IGF-
I levels are low and longitudinal growth is impaired despite
high serum levels of GH [65, 66]. These abnormalities are
corrected by insulin treatment [67, 68].

5.1.1 Insulin effect on GH receptor expression

The effects of insulin on GHR expression and function are
tissue specific. In cultures of rat hepatoma cells, insulin
increases GHRs [69]. In animal studies, insulin deficiency
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results in a decrease of GH binding and GHR expression in
liver [70, 71], which can be reversed by insulin adminis-
tration [70, 72]. In extra-hepatic tissues such as bone and
kidney, there is evidence that insulin down-regulates GHRs
[60, 70–72].

It is well established that surface membrane receptors are
dynamically regulated, with cell surface abundance repre-
senting the net balance of recycling of internalised receptors
and translocation of newly synthesized receptors to the cell
membrane. There is recent evidence that the surface
translocation of GH receptors is inhibited by insulin. Insulin
dose-dependently stimulates liver GHR synthesis and GH
binding (Fig. 3a), however increasing insulin concentra-
tions reduce GHR surface translocation (Fig. 3b), which
overcomes the effect on receptor synthesis [69]. These
findings show that the mechanism by which insulin regulates
tissue responsiveness to GH is complex and in part mediated
by effects on GHR expression and surface translocation.
Decrease in receptor surface availability with high dose in-
sulin may represent rapid mechanism for insulin regulation
of the GHR function.

In human studies, there is also evidence that insulin
modulates the expression of GHRs. This is based on mea-
surement of circulatory levels of GHBP. As GHBP is derived
from proteolytic cleavage of the extracellular domain of
the GH receptor, change in GHBP levels may reflect GH
receptor status [73]. Low blood levels of GHBP occur in
conditions associated with GH resistance such as malnutri-
tion and catabolic states. This is exemplified in anorexia
where GH levels are elevated, and levels of GHBP are
low [74, 75]. Thus when insulin levels are low, high levels
of GH does not translate into a rise in circulating IGF-
I [76–82]. In type I diabetes, GHBP levels are low and
associates with low IGF-I levels [83]. These investigations
have also observed a significant positive correlation between
levels of GHBP and total insulin dose, suggesting that GHR
status in humans is dependent on adequate insulinisation
[83].

In contrast, high levels of GHBP are associated with
hyperinsulinaemia and obesity, with GHBP falling signif-
icantly in the obese after weight loss, with normalization of
insulin levels [84, 85]. GHBP levels correlate significantly
with fat mass, and because adipocytes express GHRs, it
is possible that elevated GHBP levels simply reflect an
increase in fat mass [84].

5.1.2 Insulin effect on GH receptor signalling

There is also strong evidence that insulin modulates GHR
signalling in addition to the effects on receptor expression
and surface translocation. In rat hepatoma cells, low dose
insulin administration results in GH-induced stimulation of
JAK2 phosphorylation however high dose insulin treatment

results in inhibitory effect [69, 86]. The effect of insulin on
GHR function appears to be mediated by the PI-3 kinase
and MAPK/ERK pathways [69, 87, 88]. It has been shown
that insulin increases GH signalling by enhancing GH-
induced activation of MAPK/ERK pathway through post
signalling cross-talk [88].

In summary, insulin regulates GHR expression, translo-
cation and GHR function. The regulation of GH receptor
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Fig. 3 Effect of insulin on intracellular GH binding and GH receptor
surface translocation in human hepatoma cells (HuH7). a Effect of
insulin on intracellular GH binding. Cells were treated with insulin at
the indicated concentrations for 18 h and then GH binding was
determined using 125I-labeled human GH. Intercellular GH binding
increased with insulin in a dose dependent manner. GH binding was
expressed as percent from control. Significance vs. control: *p<
0.0001. b Reduction in GHR surface translocation to the cell with
insulin in a dose dependent manner. Cells were treated with insulin at
the indicated concentrations for 15 min and then allowed to recover
for 4 h. The GH binding was set up before and after the recovery. The
GHR translocation was measured as the recovery of GH-binding
activity of whole cells after removal of the surface GHRs by trypsin
treatment. Significance vs. control: *p=0.005; #p<0.002; †p<0.0005.
Adapted from [69]. Copyright 2000, The Endocrine Society
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expression is complex and tissue dependent. Insulin
stimulates hepatic GHR synthesis and GH binding but
down-regulates GHR expression in kidney and bone tissue.
In liver, high concentrations of insulin reduce GHR surface
translocation, in such way regulating receptor surface avail-
ability. The effects of insulin on GHR function are mediated
by stimulation of GH-induced JAK2 phosphorylation, PI-3
kinase and MAPK/ERK pathways.

5.2 Thyroid hormones

Thyroid hormones are necessary for GH dependent growth
and development. Hypothyroidism in children result in
impaired growth, low circulating IGF-I levels and impaired
GH secretion [89]. In the hypopituitary child, GH treatment
fails to normalize growth unless thyroid hormones are
replaced [90].

There is strong evidence that thyroid hormones modulate
the expression of GHRs. In vitro studies show that triio-
dothyronine dose-dependently upregulates GHR gene ex-
pression in human hepatoma cells [91]. In animal models,
hypothyroidism is associated with decrease in liver GHR
mRNA expression and GH binding, and the changes are
restored by thyroxine treatment [92–94]. In human studies,
the circulating level of GHBP, which may reflect GHR
status, is strongly correlated to thyroid hormone status with
low levels found in hypothyroidism and high in hyperthy-
roidism [95, 96]. Thus the evidence indicate that GHRs are
positively regulated by thyroid hormones in animals and
humans.

Thyroid hormones not only stimulate pituitary and liver
GHR expression but also stimulate GH gene transcription
[97–100] enhancing GH secretion [94, 101–103]. Thus thy-
roid hormones regulate the GH system through two indepen-
dent mechanisms, one involving GH gene expression and the
other through regulation of GH receptor expression.

To the best of our knowledge, interaction between thyroid
hormones and GHRs on the signalling level has not been
elucidated.

5.3 Estrogen

There is a close interaction between estrogens and GH
in the regulation of growth and development. There is
evidence that estrogen impairs the action of GH. Women
are less responsive than men to GH treatment [104].
Estrogen administered by the oral route to hypopituitary
patients suppresses GH stimulation of lipid oxidation and
protein metabolism, and in postmenopausal women increases
body fat and reduces lean mass [105–107]. However these
metabolic and body composition effects are not seen with
transdermal estrogen administration, suggesting that liver is
the major site of regulatory control by estrogen.

Estrogens affects the expression and function of GHRs.
In animals, the effect of estrogen receptor expression is
dependent on tissue type and species. It reduces expression
of GHRs in the liver of rabbits [108, 109], but exerts an
opposite effect in rodents [110–112]. In rat osteosarcoma
cells and human osteoblast-like cells, estrogen stimulates
GH binding and GHR mRNA expression [113]. Osteoblast
proliferation is enhanced by GH co-treatment with estro-
gen. Thus estrogen may potentiate the effect of GH on bone
formation.

In human, oral estrogen administration leads to a
reduction in IGF-I levels despite an increase in GH. This
observation suggests that estrogen impairs the ability of GH
to stimulate hepatic IGF-I production, indicating an
inhibitory effect on GHR function. As discussed under
GHR structure and signalling section, the JAK-STAT
pathway is a major effector of GHR signalling, necessary
for the transcriptional regulation of IGF-I. Estrogen inhibits
GH activation of the JAK/STAT pathway. The inhibition is
dose-dependent and results from suppression of GH-
induced JAK2 phosphorylation, leading to reduction in
transcriptional activity (Fig. 4; [114]). Estrogen does not
affect phosphatase activity but stimulates expression of
SOCS-2, which in turn inhibits JAK2 activation (Fig. 4).
Thus, esotrogen inhibits GH receptor signalling by stimu-
lating SOCS-2 expression (Fig. 5).

In summary, the effects of estrogen on GHRs depend on
tissue type, species and route of administration. Estrogen
inhibits GHR signalling by stimulating expression of SOCS-
2, which in turn inhibits JAK2 phosphorylation providing a
mechanism that explains inhibitory effect of estrogen on GH
action.

5.4 Testosterone

Testosterone exerts growth-promoting effect in part by
stimulating the GH-IGF-I system [115–119]. Testosterone
enhances the secretion of GH [120], an effect mediated
at the hypothalamic level by stimulation of GH releasing
hormone [121]. Thus, one mechanism how testosterone
regulates GH system is through stimulation of GH secretion
by testosterone. However, there is some evidence that tes-
tosterone can modify GHRs directly [122].

Animal studies show that in castrated or hypophysecto-
mized female and male rats, testosterone treatment for
2 weeks does not significantly change hepatic GHR mRNA
expression or GH binding [111–123]. However in male
rabbits, testosterone induced elevation in hepatic and growth
plate GHR mRNA levels [108]. Testosterone significantly
increased GHR mRNA in epiphyseal growth plates of
hypophysectomized rats [123]. Thus peripheral action of
GH on the growth plate may be modulated by testosterone
by enhancing GHR expression.
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Human studies show that testosterone augments the
biological effects of GH. In hypopituitary children, the
stimulation of growth by GH is augmented by co-treatment
with testosterone [124]. In hypogonal men, testosterone
treatment reduces the circulating concentration of GHBP
[125] suggesting an effect on GHR expression in human.
In hypopituitary men, testosterone augments the stimula-
tion of fat oxidation, protein synthesis and fluid retention
by GH [119, 126]. These observations strongly suggest
that androgens regulate tissue responsiveness to GH by
enhancing GHR signalling. The later is a likely mechanism
given that estrogens have been shown to affect negatively
GHR function. Dihydrotestosterone has been shown to
enhance prolactin activation of STAT5 signalling in

prostate cancer cells [127]. Since GHR is similar to
prolactin receptor with regards to signalling pathways, it
well may be that androgens can stimulate GHR signalling
directly. Recent studies from our laboratory have observed
that androgens augment the MAPK signalling of GH with
the androgen receptor acting as a co-activator (Leong
et al., submitted for publication).

In summary, testosterone stimulates pituitary GH secre-
tion and GHR function. There is evidence that testosterone
can stimulate GHRs directly, but the signalling mechanism
remains to be elucidated.

6 Summary

The GHR is a member of the cytokine receptor superfamily.
GHR function can be modulated by changes to the ligand,
to the receptor and to factors regulating the signal transduction
process. Targeted alterations to amino acids residing in the
critical binding sites of GH have created agonists and
antagonists, the pharmacokinetic properties of which can be
prolonged by incorporation into sustain release formulations,
by pegylation and by creation of ligand-receptor fusion
proteins. The development of pegvisomant, a pegylated
GHR antagonist, for acromegaly, heralds a new era of
endocrine therapy.

Hormones such as insulin, thyroid hormone, gonadal
steroids modulate GHR expression and function. Insulin
stimulates GHR expression, however high insulin concen-
trations reduce GHR surface translocation, in such way
regulating receptor surface availability. Thyroid hormones
stimulate expression and function of GHRs. Estrogen
inhibits signalling by GH via the induction of SOCS-2, a
protein inhibitor for cytokine signalling. This represents a
novel paradigm of steroid regulation of cytokine receptors,
and is likely to have significance beyond the GH system.
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