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kground: Epigenetic alterations are common in prostate cancer, yet how these modifications contribute
inogenesis is poorly understood. We investigated whether specific histone modifications are prognostic
state cancer relapse, and whether the expression of epigenetic genes is altered in prostate tumorigenesis.
thods: Global levels of histone H3 lysine-18 acetylation (H3K18Ac) and histone H3 lysine-4 dimethyla-
3K4diMe) were assessed immunohistochemically in a prostate cancer cohort of 279 cases. Epigenetic
xpression was investigated in silico by analysis of microarray data from 23 primary prostate cancers
h biochemical recurrence and 15 without) and 7 metastatic lesions.
ults: H3K18Ac and H3K4diMe are independent predictors of relapse-free survival, with high global
associated with a 1.71-fold (P < 0.0001) and 1.80-fold (P = 0.006) increased risk of tumor recurrence,
tively. High levels of both histone modifications were associated with a 3-fold increased risk of relapse
.0001). Epigenetic gene expression profiling identified a candidate gene signature (DNMT3A, MBD4,
, MLL3, NSD1, and SRCAP), which significantly discriminated nonmalignant from prostate tumor tis-
= 0.0063) in an independent cohort.
clusions: This study has established the importance of histone modifications in predicting prostate
relapse and has identified an epigenetic gene signature associated with prostate tumorigenesis.
act: Our findings suggest that targeting the epigenetic enzymes specifically involved in a particular
umor may be a more effective approach. Moreover, testing for aberrant expression of epigenetic genes
solid t

such as those identified in this study may be beneficial in predicting individual patient response to epigenetic
therapies. Cancer Epidemiol Biomarkers Prev; 19(10); 2611–22. ©2010 AACR.
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genome alterations including DNA methylation

difications contribute to cellular transfor-
cinogenesis (1, 2) and are characteristic of
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human malignancies. The most frequently studied
netic alteration in cancer is DNA methylation with
l DNA hypomethylation being linked to activation
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s is associated with the inactivation of genes in-
d in DNA repair, cell cycle regulation, apoptosis,
mor suppression (6-8).
tone modifications, such as lysine methylation and
acetylation, have been associated with clinical out-
in several cancers. Park et al. showed that high levels
K9triMe are associated with poor survival and that
triMe is an independent prognostic factor in gastric
carcinoma (9). Barlesi et al. showed that immuno-
chemical analysis for H2AK5Ac, H3K9Ac, and
diMe could predict overall survival in non–small cell
ancer (10). Others have shown that loss ofH4K16Ac,
triMe, H3K27triMe, and H4K20triMe is a common
in several cancers and can be used as prognostic
rs (11-14). Mohamed et al. used the cellular levels
genetic modifications in the prostate to differentiate
en benign andmalignant disease (15), and recently it
en shown that DNA methylation decreases during
e progression (16), further supporting a role for epi-
ic modifications in prostate carcinogenesis.
ently, Seligson et al. (17) reported a relationship be-
global levels of several histone modifications and
te tumor grade, but those specific histone modifica-
were not associated individually with tumor recur-
A combination of at least two of the five assessed
e modifications (H3K18Ac and H3K4diMe), both
ated with active transcription (18, 19), was required
dict tumor recurrence, but this was only observed
bset of patients with low Gleason scores (17). Nev-
ess, the findings of Seligson et al. (17) have not been
ated in a prostate cancer cohort with sufficient
l follow-up and statistical power to establish the
al relevance of histone modifications. Recently,
8Ac and H3K4diMe have been shown to predict
l outcome in kidney and lung cancer (20). There-
n this study, we used immunostaining and quanti-
image analysis to investigate whether H3K18Ac
3K4diMe are predictive of tumor recurrence fol-
g radical prostatectomy in a large prostate cancer
t with a long clinical follow-up (median, 9 years;
1-25). We also investigated whether the expression
genes encoding the enzymes involved in epigenetic
ications (i.e., epigenetic genes; ref. 26) are involved
state cancer development and progression.

rials and Methods

nt cohort
St. Vincent's Hospital Campus Prostate Cancer
(SVCPCG) tissue microarray (TMA) consisted of
ns of arrayed prostate tissue replicate cores
ted on microscope slides. Samples of prostate tissue
collected from patients undergoing retropubic rad-
rostatectomy for clinically organ-confined prostate
r (n = 279) and each patient was represented in
MA by at least duplicate 1-mm tissue cores (21).

ssue samples were surplus to diagnostic require-
and were obtained through the Garvan Institute

at a m
the d

r Epidemiol Biomarkers Prev; 19(10) October 2010
dical Research with approval from The University
elaide and the St. Vincent's Hospital (Sydney)
an Research Ethics Committees. Tumors were
d using the International Union against Cancer

(27). Prostate tumor recurrence was determined
ostate-specific antigen (PSA) failure, which was
d as a return to measurable serum PSA levels on
equential measurements subsequent to a postoper-
level below the sensitivity threshold of the assay
ng/mL). The clinical characteristics of the cohort
mmarized in Supplementary Table S1.

nodetection of H3K18Ac, H3K4diMe,
i67
tions of paraffin-embedded prostate tissue (4 μm)
the SVCPCG TMA cohort were immunostained
specific antibodies for H3K18Ac (rabbit polyclonal,
1; Abcam), H3K4diMe (rabbit polyclonal, ab7766;
), and Ki67 (mouse monoclonal, M7240; Dako).
3K18Ac and H3K4diMe antibodies used in this
have been previously utilized in similar immuno-
hemistry studies (10, 17, 20, 28). These antibodies
optimized for our immunohistochemical protocol
rforming serial dilutions for each antibody and en-
that the antibody concentrations were within lin-
nge. The optimal dilution chosen was one which
ed specificity of staining without diminution of in-
y. Tissue sections underwent microwave antigen re-
l (5 min, 750 W or 15 min, 350 W) in 10 mmol/L of
e buffer (pH 6.5), and were incubated overnight
1:7,500 H3K4diMe, 1:8,000 H3K18Ac, and 1:400
dissolved in block (5% normal goat serum in PBS)
in a humidified chamber. Visualization of immu-

ctivity was achieved using biotinylated antirabbit
ntimouse immunoglobulins (1:400, 1 h, room tem-
ure; Dako), streptavidin-peroxidase conjugate
, 1 h, room temperature; Dako), and diaminobenzi-
etrahydrochloride to yield an insoluble brown de-
A whole paraffin tissue section from a prostate

r block known to be positive for the specified anti-
as used as a positive control, and the primary an-
was omitted for the negative control.

titation of immunostaining
cer nuclei immunopositive for the proliferative
er Ki67 were scored visually by a pathologist
. Raymond). Cancer nuclei immunopositive for
8Ac and H3K4diMe were independently scored
pathologist (S. Jindal) and an experienced scientist
iam). All scorers were blinded to clinical outcome.
8Ac and H3K4diMe immunostaining was also
ified by using an automated video image analysis
system (VideoPro 32; Leading Edge P/L) as de-
d previously (25, 29, 30). VIA measurements were
ed to prostate cancer epithelial cells. Color images
contiguous fields for each tissue core were collected

agnification of ×400. VIA measurements included
iaminobenzidine tetrahydrochloride–stained area

Cancer Epidemiology, Biomarkers & Prevention
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ositively stained nuclear area in pixel units), the
uclear area examined (i.e., positively and negatively
d nuclear area in pixel units), and the integrated
l density or absorbance (IOD) of diaminobenzidine
ydrochloride deposited in the cancer cells for each
These values were used to derive three VIA mea-
ents: (a) percentage of positive nuclear area (VIA
vity; % positive nuclear area), (b) mean IOD in pos-
stained nuclear area (MOD, intensity of nuclear
g), and (c) mean IOD in the total nuclear area ex-
d (MIOD, total amount of staining).

array data analysis
genetic genes which are defined as genes encod-
zymes involved in epigenetic modifications (26),
mined from a prior Affymetrix U95 microarray
done on manually dissected epithelial cells from
mary prostate cancer samples from radical prosta-
y patients with no therapy before surgery and 7
tatic prostate cancer samples (31, 32). Eight of the
imary prostate cancer samples were from patients
xperienced a biochemical recurrence. A heat map
expression of the epigenetic genes in the prostate
samples was generated using Heatmap Builder

n 1.0 (33).

netic gene expression analysis by real-time
titative PCR
A from 22 matched nonmalignant/tumor prostate
les from patients who had undergone retropubic
l prostatectomy was obtained from the Australian
te Cancer BioResource. The Gleason scores for the
s were predominantly Gleason score 7 (n = 20), one
on score 8, and one Gleason score 9. cDNAwas syn-
ed from 300 ng of RNA using the iScript cDNA
esis kit (Bio-Rad) according to the instructions of
anufacturer. Controls for the reverse transcription
on included a “no RNA” control containing only
verse transcriptase reaction mix, water, and en-
; and a “RNA only” control that contained RNA
ate, water, and reverse transcriptase reaction mix,
o reverse transcriptase enzyme. cDNA was diluted
nd 2 μL was used in quantitative real-time PCR re-
s which were done in triplicate in a total reaction
e of 20 μL. TaqMan Gene Expression assays for
(Hs01016789_m1), DNMT3A (Hs01027166_m1),

4 (Hs00187498_m1), SRCAP (Hs00198472_m1),
(Hs00231606_m1), MLL3 (Hs00407034_m1), NSD1
076925_m1), and the reference genes GAPDH (Hs
905_ml), GUSB (4333767F), and HPRT1 (4333768F)
purchased from Applied Biosystems. cDNA was
fied using the TaqMan Gene Expression assays
aqMan Gene Expression Master Mix (Applied Bio-
s) on an iQ5 Cycler (Bio-Rad) according to the in-

ions of the manufacturer. Reaction efficiency was
ined using a standard curve fromUniversal Human

te RNA (Ambion) that had been reverse-transcribed
DNA serially diluted to form the series 1:2, 1:10,

(24, 2
positi

acrjournals.org
1:250, and 1:1,250. Each standard was done in
cate with 2 μL per reaction and PCR products were
lized by agarose gel electrophoresis to confirm the
f the PCR products. The expression values for each
epigenetic genes were normalized to an average of
ree reference genes GAPDH, GUSB, and HPRT1.

tical analysis
analyses were done using SPSS 16.0 for Windows
are (SPSS, Inc.). To evaluate the relationship with
l outcome, H3K18Ac, H3K4diMe, and Ki67 levels
analyzed initially as continuous variables using
riate Cox regression analysis. Significant continu-
ariables were then analyzed as dichotomized va-
s outlined previously (34) and by ROC analysis
We found the greatest significance and highest
icity when a cutpoint of 6% positivity was used
i67, 50% positivity for H3K18Ac, and 30 MOD
3K4diMe.
ox regression and Kaplan-Meier analyses, relapse-
urvival was used as the end point to determine
er H3K18Ac, H3K4diMe, Ki67, or the histone score
related to risk of relapse. Relapse-free survival was
ated from the date of diagnosis to the date of relapse
date of last follow-up if relapse-free. Spearman's
ation was used to determine correlations between
8Ac, Ki67, H3K4diMe, and clinicopathologic vari-
Thirty-nine percent (109 of 279) of the patients had
ailure at the time of census (December 31, 2006). Four
ts who died from other causes were censored on the
f death. For the microarray data analysis, significant
expression differences between the various groups
determined with a two-tailed Student's t test or
xon signed rank test for paired samples. Statistical
sis of the epigenetic gene signature by multivariate
VAwas done using R version 2.9.1. Statistical signif-
for all analyses was set at P < 0.05.

lts

diMe, H3K18Ac and Ki67 immunostaining in
ate cancer
majority of epithelial and stromal cell nuclei in the
regions of the TMA prostate tissue cores were pos-

y immunostained for H3K18Ac and H3K4diMe
A and B). Positive immunostaining for both anti-
was seen in the nonmalignant and prostate cancer
Supplementary Fig. S1). By visual assessment, the
an H3K18Ac percentage of positive cancer cells
7% (range, 7-100%) and for H3K4diMe was 95%
e, 9-100%). The Spearman correlation coefficients
e visual assessments between the pathologist and
ist was r = 0.935 (P < 0.0001) for H3K18Ac and
980 (P < 0.0001) for H3K4diMe. Immunostaining
of H3K18Ac and H3K4diMe were also measured
IA, which is an objective method of analysis

5, 29). The three measures generated include VIA
vity (% positive nuclear area), intensity of staining

Cancer Epidemiol Biomarkers Prev; 19(10) October 2010 2613
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), and total amount of staining (MIOD). There
marked difference between H3K18Ac visual and
ercentage of positivity frequency distributions,
the latter resulting in a more normal distribution
lementary Fig. S2A-B). In contrast, the frequency
utions of H3K18Ac MOD and MIOD are similar
h other but differ from percentage of positivity

ositivity) was significantly associated with an increased risk of PSA relaps
lementary Fig. S2C-D). In contrast to H3K18Ac,
equency distributions for H3K4diMe visual and

H3K
nifica

r Epidemiol Biomarkers Prev; 19(10) October 2010
positivity are very similar, whereas both MOD
IOD frequency distributions are similar to each
but again differ from percentage of positivity
lementary Fig. S3A-D). The frequency distribu-
for H3K4diMe percentage of positivity are skewed
e right whereas for MOD and MIOD they are
d to the left (Supplementary Fig. S3A-D).

rank statistic = 8.25, P = 0.004).
1. Immunostaining patterns and Kaplan-Meier product limit plots of relapse-free survival of H3K18Ac, H3K4diMe, and Ki67 in the prostate TMA
s. Images of prostate tumor tissue samples with low and high immunostaining for H3K18Ac (A; low positive nuclear area <50%, high positive nuclear
0%), H3K4diMe (B; low MOD intensity <30, high MOD intensity ≥30), and Ki67 (C; low nuclear positivity <6%, high nuclear positivity ≥6%).
H3K18Ac (>50% positivity) was significantly associated with an increased risk of PSA relapse (log rank statistic = 6.49, P = 0.011). B, high H3K4diMe
OD units) was significantly associated with an increased risk of PSA relapse (log rank statistic = 9.36, P = 0.002). C, high Ki67 immunostaining
18Ac and H3K4diMe VIA positivity were not sig-
ntly correlated with any of the clinicopathologic

Cancer Epidemiology, Biomarkers & Prevention
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les assessed (data not shown) but were signifi-
correlated with each other (Spearman correlation
ient, r = 0.271, P < 0.001). H3K18Ac VIA positivity
rman correlation coefficient, r = 0.208, P = 0.001)
t H3K4diMe VIA positivity (Spearman correlation
ient, r = 0.042, P = 0.485) was significantly corre-
with the proliferation marker, Ki67 (median posi-
uclei was 2%; range, 0-15%).

8Ac and H3K4diMe levels are associated with
se-free survival
only measure of H3K18Ac immunostaining that
ignificantly associated with relapse-free survival
3K18Ac VIA positivity, either as a continuous
le (P = 0.043) or when dichotomized using 50%
ve nuclear area as a cutpoint (P = 0.012; Table
amples of prostate tumors with low and high
8Ac VIA positivity are shown in Fig. 1A. Similarly,
ly immunostaining measure that was significant

3K4diMe was MOD intensity as a continuous var-
(P = 0.051) and when dichotomized using 30 MOD
as a cutpoint (P = 0.019; Table 1). Examples of
ate tumor tissues with comparable levels of
diMe positivity (72.90% and 72.92%), but different
of MOD (low = 19.19 units and high = 33.43

, are shown in Fig. 1B. Age at diagnosis and clin-
age were not significantly associated with relapse-
urvival (Table 1). All other significant variables are
in Table 1. Univariate Cox regression analysis in-
d that Ki67 status was significantly associated
relapse-free survival when assessed as a continu-
ariable (P = 0.011) and when dichotomized into
<6%) and high (≥6%) percentage of positive cells
.005; Table 1; Fig. 1C).
lan-Meier analysis showed that high H3K18Ac
% nuclear area ≥50%), high H3K4diMe (MOD in-
y >30), or high Ki67 (% positive nuclei, ≥6%) immu-
ining were significantly associated with an
sed risk of relapse (Fig. 1A-C). When the cohort
ivided on the basis of Gleason score, the relation-
between high H3K18Ac levels and PSA relapse
nly observed in patients with low Gleason score
7; Supplementary Fig. S4A-B), as per the previous
(17). However, in contrast high H3K4diMe MOD
were significantly associated with PSA relapse in
ts with either low or high Gleason score (Supple-
ry Fig. S4C-D).

8Ac and H3K4diMe levels are independent
ctors of PSA relapse
ltivariate Cox regression analysis indicated that
erative PSA, Gleason score, Ki67 (% positive nu-
H3K18Ac (VIA % positive nuclear area), and
diMe (MOD intensity) were the only independent
tors of tumor recurrence following radical prosta-
my (Table 2). High levels of H3K18Ac and

diMe were associated with a 1.71-fold and 1.80-fold
sed risk of recurrence, respectively (P < 0.0001 and

H
low (<

Caacrjournals.org
1. Univariate Cox regression analysis of

se-free survival in patie
atectomy
30 MOD) vs. high (≥30 MOD)

ncer Epidemiol Biomarkers P
nts after radica
as measured by VIA.

rev; 19(10) October 2
l

le Relativ
confide
e risk (95%
nce interval)

P

diagnosis (n = 279) 1.00
 (0.97-1.03) 0.881

l stage (n = 278)* 1.40
 (0.93-2.11) 0.114

ogic stage (n = 279)† 2.59
 (1.75-3.84) <0.0001

erative PSA (n = 263)‡ 1.78
 (1.22-2.62) 0.003

n score (n = 279)§ 2.58
s (n = 279) 1.82
(1.76-3.80) <0.0001
al vesicle
lvement (n = 279)

2.24

(1.24-2.68) 0.002
(1.52-3.30) <0.0001
apsular 2.30
 (1.56-3.39) <0.0001

nsion (n = 279)

= 277)∥ 1.08
 (1.01-1.15) 0.011

= 277)¶ 1.94
 (1.22-3.07) 0.005

Ac POS (n = 279)** 1.01
 (1.00-1.02) 0.043

Ac POS (n = 279)†† 1.73
 (1.13-2.64) 0.012

Ac MIOD (n = 279)‡‡ 1.02
 (0.99-1.04) 0.167

Ac MOD (n = 279)§§ 1.00
 (0.98-1.02) 0.734

iMe POS (n = 279)∥∥ 1.00
iMe MIOD (n = 279)¶¶ 1.01
(0.99-1.01) 0.939
iMe MOD
279)***

1.02

(0.99-1.02) 0.443
(1.00-1.03) 0.051
=
4diMe MOD
= 279)†††

1.56 (1.24-2.66) 0.019

E: All statistical analyses (footnotes ∥ to †††) were done
the highest core value present for each cancer case.
ical stage cT1 and cT2 (also includes 7 cases cT3).
thologic stage pT2 and pT3.
ason score <7 vs. ≥ 7.
operative serum PSA level (ng/mL) dichotomized by
oint <10.0 vs. ≥10.0.
7 (% positive cells) as a continuous variable.
7 (% positive cells) dichotomized by low (<6% positive
) vs. high (≥6% positive cells).
K18Ac level (% positive nuclear area) as a continuous
able as measured by VIA.
3K18Ac level (% positive nuclear area) dichotomized by
(<50% nuclear area) vs. high (≥50% nuclear area) as
sured by VIA.
3K18Ac MIOD total amount of staining as a continuous
able as measured by VIA.
3K18Ac MOD intensity of staining as a continuous
able as measured by VIA.
3K4diMe level (% positive nuclear area) as a continuous
able as measured by VIA.
3K4diMeMIOD total amount of staining as a continuous
able as measured by VIA.
3K4diMe MOD intensity of staining as a continuous
able as measured by VIA.
3K4diMe MOD intensity of staining dichotomized by
010 2615
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.006). High levels of Ki67 were associated with a
old increased risk (P < 0.0001; Table 2).

ining H3K18Ac and H3K4diMe improves the
ction of tumor recurrence
bining H3K18Ac (VIA % positive nuclear area)
3K4diMe (MOD intensity) to generate a histone
enabled patients to be stratified into four groups
he following predicted 5-year relapse-free survival
77.2%, 71.7%, 81.3%, or 52.6% for a score of 0, 1, 2,
respectively (Fig. 2). Patients with both high
8Ac positive nuclear area and high H3K4diMe
had the shortest time to relapse and the highest
failure rate (score 3; 63% of patients, 34 of 54;
). The PSA failure rates between the four groups
statistically different (log rank statistic = 18.39,
0001; Fig. 2). When the histone score index was an-
with PSA, Gleason score, and Ki67 in a multivar-

nalysis, high levels of both histone modifications
ne score = 3) identified a subgroup of patients with
en greater risk of relapse (3-fold, P < 0.0001) com-
2. Multivariate Cox regression analyses
ltivariate Cox regression
al in patients treated wit
analysis of relapse-fr
radical prostatectom

ariate analysis, n = 23
e
y

le Rela
confi
ive risk (95%
ence interval)

P

ogic stage* 2.0
 (0.66-6.57) 0.21

1.5

n score‡ 1.6

(0.98-2.29) 0.06
al vesicle 1.5

(1.01-2.57) 0.04
(0.84-2.82) 0.16
lvement

s 1.1
 (0.72-1.84) 0.64

apsular extension 0.6
 (0.21-1.92) 0.42
1.6
 (0.94-2.68) 0.07

Ac POS∥ 1.7
2 (1.07-2.76) 0.025
iMe MOD¶ 1.99 (1.30-3.06) 0.002

ltivariate Cox regression analysis of relapse-free

al in patients treated wit
 radical prostatectom
y
with preoperative PSA (1.6-fold, P < 0.023) or Glea-
ependent variables, n =
 254)
1.6
 (1.09-2.43) 0.01

n score‡ 2.1
 (1.46-3.29) <0.00
 1
1.9
 (1.18-3.11) <0.00
 1

Ac POS∥ 1.7
1 (1.08-2.69) <0.0001
iMe MOD¶ 1.80 (1.19-2.74) 0.006
ltivariate analysis with h
istone score (n = 254
1.6
 (1.09-2.43) 0.02
0 3
n score‡ 2.18 (1.46-3.29) <0.0001
1.8
 (1.18-3.11) 0.01

e score**

re 0 1.0
 —

re 1 1.5
 (0.89-2.52) 0.12
co 0 9

core 2 1.13 (0.42-3.01) 0.823
core 3 3.00 (1.73-5.31) <0.0001

hologic stage pT2 and pT3.
operative serum PSA level (ng/mL) dichotomized by
oint <10.0 vs. ≥10.0.
ason score <7 vs. ≥7.
7 (% positive cells) dichotomized by low (<6% positive
) vs. high (≥6% positive cells).
K18Ac level (% positive nuclear area) dichotomized by
(<50% nuclear area) vs. high (≥50% nuclear area) as
sured by VIA.
K4diMe MOD intensity of staining dichotomized by low
MOD) vs. high (≥30 MOD) as measured by VIA.

stone score: score 0 = H3K18Ac % positive nuclear
<50, H3K4diMe MOD intensity of staining <30. Score
H3K18Ac % positive nuclear area ≥50, H3K4diMe
D intensity of staining <30. Score 2 = H3K18Ac % pos-
nuclear area <50, H3K4diMe MOD intensity of staining
. Score 3 = H3K18Ac % positive nuclear area ≥50,
ore (2.2-fold, P < 0.0001; Table 2C).

2. Kaplan-Meier product limit plots and Cox regression analysis of
score. A, combinations of the two histone markers to generate
such that score 0 = H3K18Ac positive nuclear area <50%,

iMe MOD intensity <30; score 1 = H3K18Ac positive nuclear area
H3K4diMe MOD intensity <30; score 2 = H3K18Ac positive
area <50%, H3K4diMe MOD intensity ≥30; and score 3 =

Ac positive nuclear area ≥50%, H3K4diMe MOD intensity ≥30.
s with high levels of both histones (score 3) were at an increased
PSA relapse (log rank statistic = 18.39, P < 0.0001). B, patients

histone score of 3 had a 2.62 increased risk of relapse when
red with patients with a histone score of 0 (P < 0.0001).
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ification of a candidate epigenetic gene
ture involved in prostate tumorigenesis
specific global histone modifications were signifi-
associated with disease relapse, we assessed

er the genes regulating these modifications are al-
in prostate cancer progression. We examined the ex-
ion of 74 epigenetic genes (26), including those
ed in DNA methylation (DNMT), histone acetyla-
istone deacetylation (HDAC), histone methylation
) and histone demethylation, in a previously gener-
ffymetrix U95 prostate cancer progression micro-
data set (refs. 31, 32; Supplementary Table S2 and
ementary Fig. S5). In the primary tumors, we iden-
that 19 of the 74 epigenetic genes exhibited signif-
y different mean levels of expression in relapse-free
t samples compared with those from patients that
quently underwent biochemical recurrence (Fig. 3A
; Supplementary Table S2). Twenty-one genes were
ntially expressed between primary and metastatic
te lesions (Fig. 3B-C; Supplementary Table S2). Epi-
ic genes identified that have been previously asso-
with prostate cancer included EZH2, a histone
ltransferase that methylates H3K27, which is ex-
d at a markedly higher level in the metastatic pros-
sions compared with the primary tumors (Fig. 3B;
lementary Table S2). EZH2 has previously been
to predict biochemical recurrence in prostate can-
6-38). Similarly, the DNA methyltransferases
T1, DNMT3A, and DNMT3B were significantly ex-
d at higher levels in metastases compared with the
ry tumors (Fig. 3B; Supplementary Table S2), and
previously been shown to be upregulated in pros-
ancer when compared with benign prostate tissue
). The histone acetyltransferases CREBBP and
, the histone methyltransferase CARM1, and sever-
ACs previously implicated in prostate tumorigene-
2-51), were also expressed at significantly higher
in metastatic lesions (Fig. 3B).
ure 3C illustrates the overlap between genes signif-
y altered in primary tumors with and without bio-
cal recurrence, and those altered between primary
etastatic tumors, and highlights a candidate epi-

ic signature consisting of six genes associated with
te cancer progression. DNMT3A, MLL2, NSD1,
LL3 were significantly downregulated and
and SRCAP upregulated in the primary prostate

r samples with biochemical recurrence when com-
with the primary samples without recurrence

3A). In the metastatic samples, these same six
were also significantly altered, with DNMT3A,
, NSD1, MBD4, and MLL3 upregulated and
P downregulated when compared with the prima-
ostate tumors (Fig. 3B). The epigenetic gene
es observed in our cohort comparing primary
etastatic prostate tumors were also verified in mi-
ay data sets available in ONCOMINE (52) com-

nonmalignant and prostate cancer tissues (data

own).
20, 28
differ

acrjournals.org
igenetic gene signature that predicts
alignant from prostate tumor tissue
n independent cohort of 22 matched nonmalignant
rostate tumor samples, only MLL3 and EZH2, the
used as a positive control, were significantly al-
between the nonmalignant and tumor samples
4A-B; Wilcoxon signed rank test, P = 0.005 and
044, respectively). As expected, for EZH2, the Glea-
ore 9 sample had the highest fold change. It is not
ising that the other epigenetic genes were not sig-
ntly altered between the matched nonmalignant
umor cases because the tumor specimens had not
microdissected and may have had extensive non-
nant tissue present. However, the combination of
epigenetic genes (MLL3, MLL2, NSD1, DNMT3A,

4, and SRCAP) in a multivariate ANOVA signifi-
differentiated nonmalignant from tumor tissue
H; P = 0.006).

ssion

clinical significance of epigenetic alterations in
te carcinogenesis has only recently begun to be elu-
d. It has previously been shown that levels of two
e modifications, H3K18Ac and H3K4diMe, in com-
on could predict prostate cancer recurrence, but on-
en confined to low Gleason score tumors (17). In
udy, we report that H3K18Ac and H3K4diMe inde-
ntly predict prostate cancer relapse following rad-
rostatectomy, with high levels of either marker
associated with a poor outcome. Patients with high
of both histone modifications have a 3-fold in-
d risk of tumor recurrence compared with patients
low levels of both markers. Notably, the combined
e score was better at predicting patients with a
outcome compared with either preoperative PSA
ason score.
en the patient cohort in our study was stratified
ing to Gleason score, H3K18Ac was a significant
tor of relapse for low-grade patients only, whereas
diMe levels were a significant predictor in patient
s with low or high Gleason scores. These findings
contrast to those of Seligson et al. (17), who

ed that high levels of H3K18Ac and H3K4diMe
sociated with a better prognosis in patients with
leason score only. Paradoxically, Seligson et al.
also reported that increased H3K18Ac and
diMe levels were positively correlated with in-
ing tumor grade, consistent with our study in
higher levels of each histone modification were

ated with a poor outcome.
ecent study investigating esophageal squamous
arcinoma (53) found that high levels of H3K18Ac
K4diMe are associated with a poor prognosis,
as other studies in breast, lung, prostate, and kidney
rs have shown the opposite relationship (10, 17,

). The differences between these studies may reflect
ent methods for assessing immunostaining levels of
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histone modifications. A strength of the present
is that we used VIA, which provides an objective,

en box indicates the genes which had a significantly different expression
ical recurrence. The red box indicates the genes which had a significant
ses. *, the six overlapping genes between the green and red box which c
ucible, and unbiased assessment of immunostain-
4, 25, 29). VIA calculates three independent

as me
(MIO

r Epidemiol Biomarkers Prev; 19(10) October 2010
ures of immunoperoxidase staining: positivity (%
ve nuclear area), the intensity of these positive cells

etween the primary prostate cancer samples with and without
rent expression level between the primary tumors and the
tes the candidate epigenetic gene signature.
3. Microarray epigenetic gene expression in primary and metastatic prostate cancers. A, nineteen epigenetic genes were identified that were
antly altered between primary prostate cancer samples with and without biochemical recurrence. Average fold change (+SEM) between the primary
biochemical recurrence samples from significant probes (P < 0.05). Gene probes are ranked by fold change. B, twenty-one epigenetic genes
gnificantly altered between primary and metastatic prostate cancer samples. Average fold change (+SEM) between the primary versus metastatic
s from significant probes (P < 0.05). Gene probes are ranked by fold change. C, a heat map was generated using Heatmap Builder version 1.0.

level b
an integrated optical density in the tissue area
D, concentration), or mean optical density (MOD,
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ity). Different immunohistochemical quantitation
ods may influence both the pattern and level of
g. For example, whereas the frequency distribution

K18Ac positivity assessed by visual scoring is mark-

kewed to the right and is similar to that reported
ously (17), a normal frequency distribution was

H3K1
visua

and HPRT1.

acrjournals.org
ved for H3K18Ac positivity as determined by VIA.
istinct difference in the H3K18Ac immunostaining
ncy distributions generated by the two assessment
dologies (Supplementary Fig. S2) may account for

8Ac positivity, as determined by VIA but not by
l assessment, being a significant predictor of disease
4. The epigenetic gene
re predicts nonmalignant
mor prostate tissue.
n gene expression assays
ZH2, a positive control, and
didate epigenetic gene
re (B) MLL3, (C) MLL2,
1, (E) DNMT3A, (F) MBD4,
SRCAP indicated that only
2 and (B) MLL3 were
antly altered (Wilcoxon
rank test; P = 0.0052 and
441, respectively) between
ignant and tumor tissue in
ched prostate tumor cases.
e represents a matched
ignant/tumor prostate case.
ultivariate ANOVA (H) for

MLL2, NSD1, DNMT3A,
and SRCAP combined
d that the epigenetic gene
re was able to significantly
nonmalignant and tumor
P = 0.0063). All gene
ion levels were normalized
eference genes GAPDH,
Cancer Epidemiol Biomarkers Prev; 19(10) October 2010 2619
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e. The likely explanation for the differences in fre-
y distribution between the two methods is that
ssesses the area of brown stainingwithin each nucle-
record the mean nuclear positive area, thereby pro-
a different measure of immunostaining (i.e., area of

ve nuclear staining) compared with visual scoring
er of positive nuclei).
his study, we found that the mean intensity of
diMe expression per nucleus (MOD), but not the
ntage of positivity or total amount of staining
D), is an independent predictor of prostate cancer
me. Although the majority of patients have high
of H3K4diMe in their prostate tumors, the most
tant parameter biologically seems to be the level
ression (i.e., intensity) within individual nuclei
lementary Fig. S3).
ough the exact mechanisms whereby histone mod-

ons are altered during carcinogenesis are unknown,
ossible that, similar to DNA methylation, an in-
and decrease in different histone modifications
occur concurrently during cancer progression, re-
g in overexpression as well as silencing of genes.
stance, the epigenetic genes identified as signifi-
altered in prostate tumorigenesis in our study

omprised of several histone acetyltransferases as
s histone deacetylases. In addition, differential ex-
on changes of specific histone modifications may
ccur during prostate cancer progression. Recently,
monoMe, H3K9diMe, H3K9triMe, H3Ac, and
were shown to be significantly reduced in prostate
s when compared with nonmalignant tissue, and
and H3K9diMe levels were able to discriminate
te cancer from nonmalignant tissue (54). Indeed,
obal levels of histone modifications H3K4monoMe,
monoMe, H3K9diMe, H3K9triMe, H3Ac, and
, but not H3K4diMe and H3K4triMe, were reduced
lized prostate cancer compared with nonmalignant
s (54). However, when localized and hormone-
tory prostate cancer was compared, an increase in
istone modifications was observed (54). Remark-
five out of six genes identified in our epigenetic
signature were differentially expressed at different
s of prostate cancer (primary cancer versus bio-
cal recurrence or primary cancer versus metastases)
ing further evidence of the differential expression
es of global histone modifications during prostate
r progression.
ough global changes of a specific histone modifi-
do not necessarily equate with alterations in the

ssion of specific genes, the expression patterns of
ic histone modifications and histone-modifying en-
s can differentiate tumor samples from normal
and cluster tumor samples according to cell type
). In this study, we provide evidence that in addi-
o the histone modifications, histone-modifying en-
s or epigenetic genes also undergo alterations in

ssion during prostate cancer progression. A puta-
pigenetic gene signature including genes involved

Discl

No p

r Epidemiol Biomarkers Prev; 19(10) October 2010
A methylation (DNMT3A and MBD4), histone
ltransferases (MLL2, MLL3, and NSD1), and the
ne acetyltransferase (SRCAP) was identified.
eas DNMT3A and MBD4 have previously been
to be altered in prostate cancer (39, 57), this is
e case for MLL2, MLL3, SRCAP, and NSD1 (re-
d in ref. 26). Most importantly, the majority of these
netic genes regulate specific histone modifications
as H3K4 methylation (i.e., MLL family members)
3K18 acetylation (i.e., CBP, EP300, and GCN5L2),
is in accordance with our findings that H3K18Ac
3K4diMe are independent predictors of prostate
r recurrence. The epigenetic genes SUV39H1,
B1, and EHMT1, involved in the methylation of
3K9 residue, were also identified as being altered
rostate cancer progression, consistent with the find-
f Ellinger et al. (54), who showed that H3K9diMe
dictive of low-grade prostate cancer. Collectively,
results suggest the major role of histone methylation
ghout prostate cancer progression.
sistent with a recent study (55) investigating epige-
gene expression changes between primary prostate
s and benign samples, 13 of the 21 genes identified
r microarray data mining analysis as being signifi-
altered between primary and metastatic prostate

r samples were also identified by Ke et al. (55);
f these, 69% (9 of 13) were involved in DNA meth-
n and histone methylation. Whereas most studies
ndeavor to develop epigenetic therapies have fo-
on DNA methyltransferase inhibitors (DNMTi)
istone deacetylase inhibitors (HDACi), our results
er with Ke et al. (55) highlight the importance of
in prostate tumorigenesis, and that histone meth-

n inhibitors (HMTi) are potential therapeutic targets
ostate cancer. Moreover, identification of DNMT/
and histone acetylations as the second most signif-

y altered category of epigenetic genes suggests the
tial for a combination therapy for prostate cancer.
te, a treatment option with a HMTi combined with
MTi or HDACi for the treatment of prostate cancer
ot been investigated, but this will be increasingly
ible with the development of new HMTi and more
and less cytotoxic DNMTi alternatives.
ummary, we have identified the prognostic poten-
histone modifications in prostate cancer. We also

t an epigenetic gene signature associated with pros-
umorigenesis, suggesting that targeting the epige-
enzymes specifically involved in prostate cancer
enhance therapeutic response to epigenetic thera-
esting for aberrant expression of epigenetic genes,
as those identified in this study, may be used to
fy patients who are likely to respond to epigenetic
ies, monitor response to these therapies, and pre-
atient outcome.
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